DOI: 10.36485/1561-6274-2019-23-6-9-28

- A. V. Smirnov¹, B. V. Afanasyev^{2,3}, I. V. Poddubnaya⁴, V. A. Dobronravov¹, M. S. Khrabrova^{*5}, E. V. Zakharova^{6,7,8}, E. A. Nikitin^{9,10}, L. V. Kozlovskaya¹¹, I. N. Bobkova^{11,12}, V. V. Rameev¹¹, M. M. Batyushin¹³, I. S. Moiseev^{2,3}, E. I. Darskaya², O. V. Pirogova², L. P. Mendeleeva¹⁴, L. S. Biryukova^{7,14} on behalf of Consensus Participants nephrologists and hematologists of the Russian Federation and professional communities¹⁵
- ¹— Research Institute of Nephrology, Department of Propaedeutics of Internal Diseases, I. P. Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- ² Raisa Gorbacheva Memorial Research Institute of Pediatric Oncology, Hematology and Transplantation,
- I. P. Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- ³ Department of Hematology, Transfusiology, Transplantation, Faculty of Postgraduate Education, I. P. Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- ⁴ Department of Oncology, Russian Medical Academy of Continuing Professional Education, Moscow, Russia
- ⁵ Department of Propaedeutics of Internal Diseases with a Clinic, I. P. Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- ⁶ Department of Nephrology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
- ⁷ Department of Nephrology and Dialysis, Russian Medical Academy of Continuing Professional Education, Moscow, Russia
- ⁸ Department of Nephrology, S. P. Botkin City Clinical Hospital, Moscow, Russia
- ⁹ Department of Hematology and Transfusiology, Russian Medical Academy of Continuing Professional Education, Moscow, Russia
- ¹⁰ Outpatient department for hematology, oncology and chemotherapy, Moscow City Hematology Center,
- S. P. Botkin City Clinical Hospital, Moscow, Russia
- ¹¹ Department of Internal, Occupational Diseases and Rheumatology, Institute of Clinical Medicine,
- I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- ¹² Research Department of Health Saving Technologies of the Biomedical Science and Technology Park,
- I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- ¹³ Department of Internal Medicine No. 2, Rostov State Medical University, Rostov-on-Don, Russia
- ¹⁴ National Medical Research Center for Hematology, Moscow, Russia
- ¹⁵— Consensus Participants' list is present below the article text

Monoclonal Gammopathy of Renal Significance: Consensus of Hematologists and Nephrologists of Russia on the Establishment of Nosology, Diagnostic Approach and Rationale for Clone Specific Treatment

^{*}Contacts: Maria S. Khrabrova, e-mail: hrabrovamc@gmail.com ORCID ID: https://orcid.org/0000-0002-8141-4488

Abstract

Monoclonal gammopathy of renal significance (MGRS) is a new nosology group in modern-day nephrology and oncohematology. MGRS is defined as kidney injury due to nephrotoxic monoclonal immunoglobulin produced by the B cell line clone that does not reach the hematological criteria for initiating cancer treatment according to oncological and hematological indications. The action of the monoclonal protein on kidney parenchyma results in the irreversible decline of kidney function to the point of loss of organ function which, in line with the position of International Consensus of hematologists and nephrologists, determinates the necessity for clone specific treatment in patients with MGRS despite the absence of hematological indications for treatment initiation. The main challenge of MGRS in the Russian Federation is the inaccessibility of timely diagnostic and appropriate treatment for the majority of patients due to the following reasons: 1) limited knowledge about MGRS among hematologists and nephrologists; 2) lack of necessary diagnostic resources in most health-care facilities; 3) lack of approved clinical recommendations and medical economic standards for the treatment of this disease. The consensus document comprises the opinion of Russian experts on nosological classification, diagnosis and approaches to the treatment of MGRS and is based on the results of a joint meeting of leading hematologists and nephrologists of the country. The meeting was held on 15-16 of March 2019 in during the "Plasma cell dyscrasias and lymphoproliferative diseases: modern approaches to therapy" conference at I.P. Pavlov First Saint Petersburg State Medical University. The present Consensus is intended to define the principal practical steps to resolve the problem of MGRS in the Russian Federation that are summarized as final clauses.

Key words: monoclonal gammopathy of renal significance, monoclonal gammopathy of undetermined significance, onconephrology, kidney injury, clone specific treatment, paraprotein, kidney biopsy, plasma cell dyscrasias, light chains

Conflict of interests

The authors declare no conflict of interests

Sources of funding

The authors declare no funding for this study

Primary source

Published with permission of the journal

Nephrology 2019; 23 (6): 9-28. DOI: 10.36485 / 1561-6274-2019-23-6-9-28

For citation: Smirnov A. V., Afanasyev B. V., Poddubnaya I. V. et al. Monoclonal gammopathy of renal significance: Consensus of Hematologists and Nephrologists of Russia on the Establishment of Nosology, Diagnostic Approach and Rationale for Clone Specific Treatment. The Russian Archives of Internal Medicine. 2020; 10(2): 102-118. DOI: 10.20514/2226-6704-2020-10-2-102-118

Introduction

The concept of monoclonal gammopathy renal significance (MGRS), proposed by the International Kidney and Monoclonal Gammopathy Research group [1, 2], implies a pathological condition due to proliferation of a B cell clone or plasma cell that does not reach criteria necessary to start treatment according to oncohematological indications, but produce nephrotoxic monoclonal immunoglobulin (IG), which leads to specific kidney injury with irreversible decline of kidney function and deterioration of the prognosis for the disease. The progression of renal dysfunction, right up to loss of organ function, according to the opinion adopted by international experts, is determinative in deciding whether to

prescribe treatment targeted at eliminating the pathological clone, despite the absence of criteria for oncohematological indications. In recent years, a number of publications on MGRS have been released by nephrologists in Russia [3–6]. At the same time, such clinical cases of an obvious connection between an aberrant clone (sometimes minor) and kidney injury remain poorly recognized by both physicians and public health authorities. Due to the lack of knowledge among hematologists and nephrologists of MGRS, the lack of approved recommendations and medical and economic standards of treatment, a number of organizational problems arise, including the lack of an effective, timely diagnosis and treatment for most patients. The use of effective therapy is limited by outdated approaches and standards of care, based mainly on hematological criteria for

beginning treatment. Current recommendations on the treatment of lymphatic tumors associated with the secretion of monoclonal paraprotein suggest specific therapy if clinical indications exist. This practice is currently under review, especially in patients with multiple myeloma (MM). Monoclonal lymphocytosis and monoclonal gammopathy of undetermined significance (MGUS) in modern definitions are not regarded as diseases, but as conditions of predisposition to lymphatic tumors with a different risk of transformation and therefore are not subject to therapy. This approach is not true with respect to MGRS, in which a "small" clone is dangerous and life-threatening [7–11], and timely therapy leads to a significant improvement in prognosis [12–15]. This consensus of the country's leading hematologists and nephrologists is intended to outline ways of practically solving the problems of MGRS diagnosis and treatment in the Russian Federation that are critical for this category of patients.

The Concept of Monoclonal Gammopathy of Renal Significance

Monoclonal gammopathy (MG) is the presence of an aberrant clone of the B cell line of differentiation which produces the IG molecule or its fragments. A modern view of the nosologies due to MG, and the role of MGRS in the classification are presented in Fig. 1. A clone is a cell population derived from a single progenitor cell and inherits all its properties, including the ability to produce a monoclonal paraprotein. The produced monoclonal protein, called paraprotein or M-protein, can have pathological properties that are realized in various ways, including deposition in organs and tissues, leading to their damage. Clonal cells can produce a full-sized IG molecule or its fragment (only light chain (LC) or only heavy chain). Cases with the production of two LC isotypes, two or more full-sized immunoglobulins

Monoclonal Gammopathy

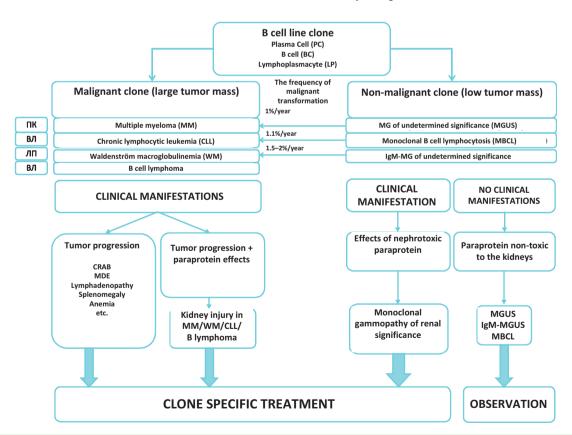


Figure 1. Clinical variants of monoclonal gammopathies

 $\textbf{CRAB}-\text{criteria} \ \text{for organ damage due to ρ lasma cell proliferation in multiple myeloma (hypercalcemia, renal insufficiency, anemia, bone lesions); $MDE-m$ myeloma defined events; $BC-B$ cell; $LP-lymphoplasmacyte; $WM-Waldenström macroglobulinemia; $MBCL-m$ onoclonal B$ cell lymphocytosis; $MG-m$ onoclonal gammopathy; $MGUS-m$ onoclonal gammopathy of uncertain significance; $MM-multiple myeloma, $PC-p$ lasma cell, $CLL-chronic lymphocytic leukemia$

are possible. Depending on the stage of differentiation, B cell clonal proliferation can be divided into:
1) lymphocytic; 2) lymphoplasmacytic; 3) plasma cell. The MG classification based on the type of clonal line, as well as the criteria for each of the states are given in Table 1 [16–20]. Clinical manifestations of MG are associated with: a) an increase in tumor mass; b) the abnormal effects of IG. Most cases of MG occur subclinically, which reflects the early stages of the disease and is included in the concept of MGUS (or monoclonal B cell lymphocytosis in

the case of lymphocytic proliferation). In most cases of MGUS, the produced paraprotein does not have nephrotoxicity (i.e., the ability to have any damaging effect on the organ). This condition has a favorable course with a frequency of progression to a malignant form of about 1% per year [21–23]. To assess the low, intermediate, and high risk of MGUS transformation, scales based on an assessment of the ratio of free LCs and the amount of M-protein are used, and treatment is started only when clinical symptoms of the tumor appear (see Table 1).

Table 1. Classification and Criteria of Monoclonal Gammopathies (According to Leung N. et al. [2] as amended)

Clone Type	Disease	Clone volume in BM / peripheral blood	M-gradient in peripheral blood	Visceral end organ damage, (criteria for starting treatment)
Plasma cell clone	MGUS	<10 %	<30 g/l	No
	Smoldering (indolent) myeloma	10-60%	≥30 g/l	No
	Multiple myeloma (symptomatic)	≥10% or plasmacytoma	≥30 g/l	Yes*
Clone of lymphoplasmacytic cell line	IgM-MGUS	<10%	<30 g/l	No
	Smoldering Waldenström macroglobulinemia	>10%	≥30 g/l	No
	Waldenström macroglobulinemia (symptomatic)	>10%	≥30 g/l	Yes **
B lymphocyte Clone	Monoclonal B cell lymphocytosis	Monoclonal B cells in peripheral blood $< 5 \times 10^{9}$ /l	any	No lymphadenopathy
	Chronic lymphocytic leukemia	Monoclonal B cells in peripheral blood $> 5 \times 10^9 / 1$	any	Yes ***
	Other forms of B cell LPD	+/-	any	

Note: MGUS — monoclonal gammopathy of uncertain significance; BM — bone marrow; LPD — lymphoproliferative disorder. * CRAB [15]

- >60% of plasma cells in the bone marrow
- ratio of involved/uninvolved free LC serum > 100
- · > 1 focal bone marrow involvement by magnetic resonance imaging with a diameter of more than 5 mm

- Symptoms associated with tumor growth: lymphadenopathy, splenomegaly, hepatomegaly, organomegaly, anemia, thrombocytopenia, B symptoms
- Symptoms associated with IgM overproduction: cryoglobulinemia, immune hemolytic anemia and/or thrombocytopenia, nephropathy, neuropathy, amyloidosis, hyperviscosity syndrome (increased blood viscosity due to the extremely high plasma protein content due to paraprotein with the development of the following symptoms: mucosal bleeding, neurological deficit, visual impairment), IgM level > 50 g/l

C — hypercalcemia R — renal insufficiency; an outdated term in the nephrological literature. In this case, this refers to cylinder nephropathy, which manifests as acute kidney injury (AKI). Previously, the criterion implied serum creatinine >0.177 mmol/l, and creatinine clearance <40 ml/min has now been added [48]. The fact of AKI is not indicated as an essential condition. Before using this criterion as a guide, it is necessary to make sure that the patient does not have kidney injury of any other etiology (diabetic nephropathy, nephroangiosclerosis due to arterial hypertension, etc.). Otherwise, prescribing toxic treatment to such patients may be accompanied by severe adverse reactions. A — anemia. B — bone lesions

^{*} Myeloma defined events (MDE) [16]

^{**} Indications for starting treatment of Waldenström macroglobulinemia [17, 27]

^{***} Symptomatic lymphadenopathy / cytopenia / splenomegaly / organomegaly / B symptoms

An example is the scale for assessing the risk of progression of MGUS in MM developed at the Mayo Clinic [24]. An increase in tumor mass leads to organ damage in the form of "CRAB" symptoms (C — hypercalcemia; R — renal insufficiency; A — anemia; B — bone lesions) in MM; lymphadenopathy, hepatosplenomegaly, signs of neoplastic suppression of hematogenesis, etc. in chronic lymphocytic leukemia (CLL) and Waldenström macroglobulinemia. The appearance of these symptoms is an indication for treatment. Another part of the clinical spectrum is due to the effects of paraprotein and its damaging effect on tissues and organs, including the kidneys. Symptoms due to paraprotein can occur even with a low tumor mass and a small concentration of paraprotein in circulation. The concept of a "small but dangerous clone" in MG, first proposed by G. Merlini and M.J. Stone in 2006 [25], suggests a clinically dominant organ lesion and poor prognosis due to the pathological effects of paraprotein, but not tumor progression per se. To describe such cases, the term MG of clinical significance was recently proposed [26].

MGRS is a term that differentiates the well-known concept of MGUS, removing a number of clinical cases from the confines of "uncertainty". MGRS is also characterized by a clone that is lower than the level corresponding to the criteria for diagnosis of MM or lymphoproliferative disease requiring treatment. According to the Research Institute of Nephrology, the average value of bone marrow plasmatization in case of MGRS was 2.2%, and the level of paraprotein in serum was 1.1 g/l [4]. At the same time, in contrast to cases of MGUS, the produced M-protein in MGRS has nephrotoxicity and leads to clinically significant damage to the kidneys and other organs. Nephrotoxic monoclonal IG can be produced both with low and large tumor mass. If there are grounds for a criteria-based diagnosis of malignant proliferation of a clone of the B cell line of differentiation and kidney injury, this suggests that the produced paraprotein is nephrotoxic. Such cases are not associated with MGRS; a hematological tumor ranks first when articulating the diagnosis, and kidney injury is considered a complication. In the case of nephrotoxicity of monoclonal paraprotein and a "small" clone, the diagnosis should be defined as "MGRS" with a description of the nature of kidney injury, for which the morphological study of renal tissue is crucial. According to the consensus of the International Kidney and Monoclonal Gammopathy Research Group of 2019 [2], the concept of MGRS was expanded compared to the consensus of 2012 [1]. The B cell/plasma cell proliferations, such as "smoldering MM, smoldering Waldenström macroglobulinemia, monoclonal B cell lymphocytosis, as well as CLL and low grade malignant lymphomas (marginal zone lymphoma, mantle cell lymphoma, MALT lymphoma)" were additionally included in the MGRS group as conditions in which the clone produces nephrotoxic IG, but which does not require therapy for hematologic indications.

Epidemiology

Renal damage due to paraprotein is a rare abnormality in the structure of kidney diseases. According to the Research Institute of Nephrology, the prevalence of renal disorders associated with any variant of MG is 7.5% among all patients who underwent diagnostic kidney biopsy. At the same time, MGRS was detected in 4% patients [4]. These figures match the data presented in global literature [11, 28]. According to the Ministry of Health of the Russian Federation, the incidence of "Glomerular, tubulointerstitial kidney diseases, other kidney and ureter diseases" in 2017 amounted to 255 cases per 100,000 adults. Taking into account that a significant part of these cases includes diseases for the diagnosis of which a morphological study of kidney bioptate is not needed (infectious tubulointerstitial nephritis, reflux nephropathy, etc.) and the frequency of MGRS which is 4%, based on morphological verification of the diagnosis, it can be concluded that the incidence of MGRS is generally close to the criteria for orphan disease (10.2 cases per 100,000 adults/year).

Prognosis

MGRS cannot be considered a benign condition, because a clone steadily leads to the progression of renal dysfunction due to the effects of paraprotein and, ultimately, to organ death (terminal stage of chronic kidney disease, CKD). The medical and economic importance of CKD is determined by a pronounced increase in the risks of non-fatal and fatal events, disability of patients,

5-year Renal Survival with Various Types of Kidney Injury

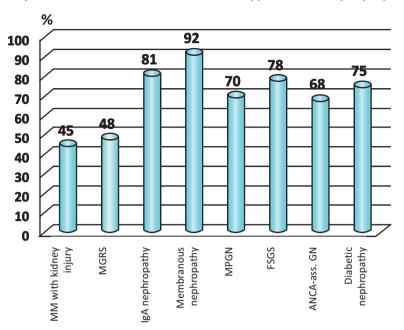


Figure 2. Renal prognosis for multiple myeloma with kidney injury, monoclonal gammopathy of renal significance, and other nephropathies (according to the Research Institute of Nephrology)

ANCA-ass. GN – glomerulonephritis associated with anti-neutrophil cytoplasm antibodies; MM – multiple myeloma; MGRS – monoclonal gammopathy of renal significance; MPGN – membrane proliferative glomerulonephritis; FSGS – focal segmental glomerulosclerosis

as well as significant costs of dialysis [29–33]. The renal prognosis for MGRS is comparable to that for MM with kidney injury and significantly worse than for other nephropathies (Fig. 2). In addition, in the presence of MGRS, the risk of malignant clone progression is higher, which means that the prognosis for life expectancy is worse. So, the risk of a clone transforming into a malignant form in MGRS is 3.3 times higher and during the first year is 10% [11], which is comparable with the rate of progression of smoldering MM into symptomatic [34].

The Rationale for Establishment of Nosology of Monoclonal Gammopathy of Renal Significance

The unfavorable prognostic value of MGRS makes obvious the need for treatment of such a "non-life-threatening", from the formal point of view of classical oncohematology, clonal process [2]. A similar "precedent" well known in oncohematology is a systemic AL amyloidosis, a serious disease with a minimal clone of plasmocytes in the bone marrow, which has extremely unfavorable prognosis in the absence of treatment and has long been the subject of irreconcilable differences between hematologists and nephrologists. Effective chemotherapy regimens for AL amyloidosis, designed to eliminate the tumor clone, have been developed and used

for a long time, including in Russia [35–38]. The same treatment strategy should be used for nonamyloid forms of kidney injury associated with MG [12, 39–43]. The stereotype of treating only a malignant clone in international practice was overcome in stages with the accumulation of data on the pathophysiology of MG, which is reflected in a number of works in the first decade of the 21st century [7, 25, 44–46]. The most significant milestone was the famous work of N. Leung et al., published in 2012 in the Blood Journal on behalf of the International Kidney and Monoclonal Gammopathy Research Group [1]. The title of this article, "Monoclonal Gammopathy of Renal Significance: When MGUS Is No Longer Undetermined or Insignificant", reveals significant changes in the understanding by the world's leading hematologists and nephrologists of the problem of kidney injury in MG and the awareness of the need for treatment of this condition. Subsequently, numerous articles were published on this subject [47-50], the interest in which, primarily from nephrologists, is due to the possibility of effective etiotropic treatment, minimization/elimination of the effects of nephrotoxic M-protein, and as a result, an improvement in the general and renal prognosis. The recognition by foreign medical communities, including the International Myeloma Working Group [18], of the relationship between clone and kidney injury (monoclonal renal gammopathy) has opened up the possibility of prescribing highly effective chemotherapy to such patients. The therapeutic effect aimed at suppressing the clone was effective both in terms of renal outcomes and overall survival [7, 9, 12-14].

Mechanisms and Structure of Kidney Injury in MG

The mechanisms of paraprotein action on the renal tissue and body structures are extremely diverse and have not yet been fully elucidated [26, 51]. Due to structural features, physical and chemical properties of the paraprotein molecule itself, as well as the action of local factors, abnormal IG and/or LC can: 1) have a toxic effect on cells; 2) act like antibodies in relation to various molecules; 3) activate the immune system, in particular the complement system; 4) interact with mesangiocytes and other nephron cells and accumulate in the form

of deposits of various structures, for example in the form of amyloid fibrils. In MGRS, the pathological effect of monoclonal IG can be realized at the level of any nephron compartment: glomerulus, tubules, interstitium, blood vessels [52]. From here arises the variety of clinical manifestations of MGRS, which may appear as any renal parenchyma lesion syndrome or a combination thereof (Fig. 3). Due to the fact that the PC or B cell clone is "small" and, as a rule, does not cause obvious symptoms associated with the tumor, patients with MGRS, who have mainly renal manifestations, are primarily nephrologist patients, complaining of "renal" symptoms (arterial hypertension, edema, hematuria, proteinuria, renal dysfunction, etc.). Fig. 4 shows nephropathy variants associated with MG, according to the Department of Nephrology at the State Budgetary Healthcare Institution "S. P. Botkin City Clinical Hospital" of the Moscow Health Department and the clinic of the Research

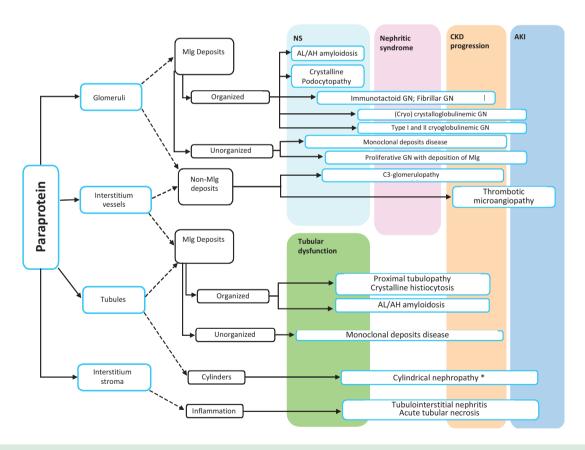
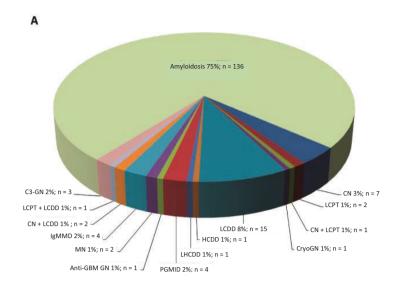



Figure 3. Pathomorphological variants of kidney injury due to paraprotein and their clinical manifestation

The variants of kidney injury, the relationship with monoclonal gammopathy of which does not yet have sufficient evidence, include: glomerulonephritis associated with anti-glomerular basement membrane antibodies; membranous nephropathy, including one associated with anti-phospholipase A2 receptor antibodies; IgA nephropathy in Sch nlein—Genoch disease associated with monoclonal IgA [2].

* Cylindrical nephropathy mainly occurs when there is excessive production of light chains in multiple myeloma and is not associated with MGRS.

 \mathbf{MIg} — monoclonal immunoglobulin; GN — glomerulonephritis; NS — nephrotic syndrome; AKI — acute kidney injury; CKD — chronic kidney disease.

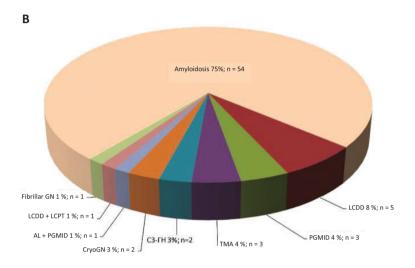


Figure 4. The spectrum of nephropathies associated with monoclonal immunoglobulins

A — according to the Department of Nephrology at the State Budgetary Healthcare Institution S. P. Botkin City Clinical Hospital of the Moscow Health Department, 181 patients; B — according to the clinic of the Research Institute of Nephrology at the I.P. Pavlov First Saint Petersburg State Medical University, 72 patients. AL — AL amyloidosis; C3-GN — C3-glomerulonephritis; Anti-GBM GN - glomerulonephritis caused by antiglomerular basement membrane antibodies; LHCDD — light and heavy chain deposition disease; \widetilde{LCDD} — light chain deposition disease; HCDD — heavy chain deposition disease; CryoGN — cryoglobulinemic glomerulonephritis; IgMMD glomerulonephritis caused by monoclonal IgM deposits; MN — membranous nephropathy; PGMID — proliferative glomerulonephritis with monoclonal immunoglobulins deposition; LCPT — light chain proximal tubulopathy; TMA — thrombotic microangiopathy associated with monoclonal gammopathy; CN — cylinder nephropathy.

Institute of Nephrology at the I. P. Pavlov First Saint Petersburg State Medical University.

Depending on the profile and academic and research orientation of the hospital, the structure of renal lesions associated with monoclonal gammopathy may vary while the tendency towards the dominance of AL amyloidosis remains. According to the multidisciplinary therapeutic hospital at the I.M. Sechenov First Moscow State Medical University, E.M. Tareev Clinic of Nephrology and Internal and Occupational Diseases, 276 patients with monoclonal gammopathy were diagnosed, 51% of whom had AL amyloidosis [3]. Among non-amyloid nephropathies (n = 63, 23%) at an equivalent frequency of morphologically confirmed chronic glomerulonephritis in comparison with a sample from the S.P. Botkin City Clinical Hospital (membrane proliferative — 4%, focal segmental glomerulosclerosis — 1%, membranous — 1%, minimal mesangial changes — 1%), cryglobulinemic glomerulonephritis (6%) is a more significant part, mainly in case of HCV-associated type II cryoglobulinemia, the smaller part is monoclonal immunoglobulin deposition diseases (1%) and cylinder nephropathy (1%).

MGRS and the Structure of the ICD

The recognition by the international community of MGRS as a separate nosology is also reflected in the International Classification of Diseases (ICD). The ICD-11 project, which is available on the official website [53] and scheduled for approval in 2019, includes two of the most common variants for kidney injury in MG: AL amyloidosis and monoclonal immunoglobulin deposition disease (Randall type monoclonal immunoglobulin deposition disease, MIDD). In the new version of the ICD, MIDD is a subsection of the chapter titled "Plasma Cell Neoplastic Diseases" (2A83.0).

Table 2. The List of Nosologies to Include in the MGRS Group

AL amyloidosis

AH amyloidosis

Immunoglobulin light chain deposition disease

Immunoglobulin heavy chain deposition disease

Immunoglobulin heavy and light chain deposition disease

Proliferative glomerulonephritis with monoclonal immunoglobulin deposition

Immunotactoid glomerulonephritis

Monoclonal fibrillary glomerulonephritis

Crystalline podocytopathy associated with monoclonal gammopathy

C3-glomerulopathy associated with monoclonal gammopathy

Thrombotic microangiopathy associated with monoclonal gammopathy

Cryoglobulinemic glomerulonephritis as part of type I or II cryoglobulinemia

Light chain proximal tubulopathy

Crystalline histiocytosis

Tubulointerstitial nephritis associated with monoclonal gammopathy

(Cryo)crystal-globulinemic glomerulonephritis

Other forms of glomerulopathy that have been proven to be associated with monoclonal gammopathy, including anti-GBM nephritis associated with monoclonal gammopathy and membranous nephropathy associated with monoclonal gammopathy

 $\textbf{Note.} \ MGRS - monoclonal \ gammopathy \ of \ renal \ significance; anti-GBM \ nephritis - glomerul one phritis \ caused \ by \ anti-glomerul arbasement \ membrane \ antibodies.$

Table 3. Coding for Kidney Injury Associated with Monoclonal Gammopathy According to ICD-10

Clone Type	Nomenclature depending on the degree of the clone proliferation and the code of hematological nosology	MGRS type and the code of nephrological nosology
	MGUS D47.2 Monoclonal gammopathy of uncertain significance	Non-amyloid kidney disease
Plasma cell	D89.1 Cryoglobulinemia Smoldering (indolent) myeloma	N00-08 Glomerular disorders, including
clone	C90 Multiple myeloma and plasma cell malignancies	N08.1 Glomerular disorders in neoplastic diseases (MM, WM)
	AL/AH amyloidosis E85.8 Other forms of amyloidosis	N08 * Glomerular disorders in diseases classified elsewhere
Clone of the	IgM-MGUS D47.2 Monoclonal gammopathy of uncertain significance D89.1 Cryoglobulinemia	N10-16 Renal tubulo-interstitial diseases, including
plasmacyte line	D89.8 Other specified disorders involving the immune mechanism, not classified elsewhere	N16* Renal tubulo-interstitial disorders in diseases classified elsewhere
	Smoldering Waldenström macroglobulinemia C88.0 Waldenström macroglobulinemia	N16.1 Renal tubulo-interstitial disorders in
	Monoclonal B cell lymphocytosis D 72.8 Other specified disorders of white blood cells	neoplastic diseases (leukemia, lymphoma, MM)
B lymphocyte	Chronic lymphocytic leukemia	N17-19 Renal failure
Clone	B cell non-Hodgkin lymphoma C91.1 Chronic lymphocytic leukemia C82 Follicular non-Hodgkin lymphoma	Amyloidosis the above codes may apply as well
	C83 Diffuse non-Hodgkin lymphoma D89.1 Cryoglobulinemia	N08.4 Glomerular disorders in amyloidosis

 $\label{eq:MGUS-monoclonal} \begin{tabular}{l} Mote: MGUS-monoclonal gammopathy of uncertain significance; MGRS-monoclonal gammopathy of renal significance; MM-Waldenström macroglobulinemia; ICD-International Classification of Diseases; MM-multiple myeloma. \\ \end{tabular}$

The above is the basis for the recognition of MGRS as a separate group of nosologies in the structure of monoclonal gammopathies, as well as at the level of management by Russian public health authorities. Nosologies that are part of the MGRS group are presented in Table 2.

Hematologists and nephrologists, the authors of this consensus, for the period before the Russian translation of the ICD-11 text in the Russian Federation, came to the conclusion that it was necessary to use the ICD-10 codes to characterize different versions of the MGRS (Table 3). In case of kidney injury associated with MG, the hematological nosology code should be combined with the nephrological nosology code.

A Multidisciplinary Aρρroach to the Diagnosis and Treatment of MGRS

MGRS is a problem at the intersection of two specialties — hematology and nephrology, which requires a multidisciplinary approach.

As part of the implementation of the latter, the task of the hematologist is to verify clonality, and at the final stage, decide on the nature of clone specific therapy, i.e., therapy aimed at controlling clone proliferation, including methods of high-dose chemotherapy and hematopoietic stem cell transplantation. The need for the involvement of a nephrologist is due to the fact that in MGRS, a nephrotoxic M-protein is produced, which leads to a wide variety of types of kidney injury and renal dysfunction. The clinical and morphological pattern of MGRS is difficult to differentiate from numerous other abnormalities that are not associated with MG without the use of complex phased research methods and their interpretation.

Diagnosis of MGRS

To establish the diagnosis of MGRS, it is necessary: 1) to determine the presence of a clone of the B cell line of differentiation and 2) establish the specificity of kidney injury due to exposure to a monoclonal protein produced by the clone. In this regard, diagnosis includes hematological and nephrological research methods [2, 52]. Taking into account the significant variety of variants of kidney injury in

MGRS, it is obvious that the morphological study of renal tissue is a key step in the diagnosis of this condition [54]. The result of histological examination and clinical and morphological analysis reveal the features of MGRS in each particular case, and also provide information, which is extremely important for the nephrologist with respect to the renal prognosis.

Morphological Diagnosis of MGRS

In order to fully diagnose MGRS, a morphological study of renal tissue should include:

- 1) **Optical microscopy** with the following staining: hematoxylin/eosin, PAS, Jones staining, Congo red staining, Masson's trichrome stain, stain for elastic fibers;
- 2) Immunomorphological examination: immunofluorescence (IF) or immunohistochemistry (IHC) to detect deposits of monoclonal IG molecules in the renal parenchyma [panel of anti-IgA, IgM, IgG (IgG typing), IgD, kappa, lambda, C3, C1q antibodies]. In some cases, immunomorphological methods should be supplemented with enzymatic demasking of antigen epitopes of monoclonal IG, which allows more efficient diagnosis of MGRS, when routine IHC/IF examinations do not yield results [55–57]. For the differential diagnosis of fibrillary glomerulonephritis, where deposits may be congophilic, an IHC test for DNAJB9, a protein of the chaperone family, is extremely specific for this type of glomerulonephritis [58, 59].
- 3) Ultrastructural examination allows to assess the severity of injury of the kidney structures at the submicroscopic level and the nature of the deposits formed by the monoclonal protein (organized, unorganized). The latter is the key in the differential diagnosis of such forms of MGRS as immunotactoid, fibrillary, cryoglobulinemic glomerulonephritis, etc. Sometimes, in order to detect a monoclonal protein, the examination can be supplemented by ultrastructural IHC with labeled gold nanoparticles [60, 61].

At the final stages of the morphological differential diagnosis of MGRS with the use of omics-technologies and, in particular, proteomics in some centers abroad, laser microdissection is used, followed by separation of the protein components of the renal

tissue by capillary electrophoresis and identification of the molecular composition using MALDI-TOF (matrix-activated laser desorption ionization with time-of-flight analysis and visualizing mass spectrometry) [54, 62, 63].

The above approaches to morphological diagnosis should be carried out exclusively in a highly specialized and well-equipped morphological laboratory, where all the necessary techniques will be applied and evaluated by an experienced nephropathologist.

Hematologic Diagnosis of MGRS

The aim of the hematological examination is to identify paraprotein and a clone of the B cell line of differentiation. The scope of the examination corresponds to that for MM, B lymphoma or Waldenström macroglobulinemia and is described in detail in the relevant recommendations [17–21, 27].

For successful verification of a "small" clone, it is important to use highly sensitive techniques that can detect even a small clone and a small amount of paraprotein: immunophenotyping of bone marrow, genetic studies, immunofixation of blood serum and urine, determination of free LC in serum by the Freelite method or other methods that have been proven to be comparable with Freelite. These methods are the basis not only for primary hematological diagnosis, but also for evaluating the effectiveness of treatment and the progression of the disease.

Treatment of MGRS

The treatment of MGRS should also be based on the **multidisciplinary** approach, it should be clone-specific and include well-known drugs and chemotherapy regimens used for MM, B lymphoma, CLL and Waldenström macroglobulinemia [16–20, 27,

39, 42, 64, 65]. Modern approaches to the etiotropic therapy of MGH are briefly reflected in the Table 4. The aim of treatment is to reduce the production of pathogenic LC/IG, to reduce the deposition of paraprotein in organs and tissues, to prevent further progression of their dysfunction, as well as to prevent the transformation of the clone into a malignant form [11]. In addition to chemotherapy, high-dose polychemotherapy with support for hematopoietic stem cell autotransplantation (autoHSCT) should be considered as an option for the treatment of MGRS.

The tasks of comprehensive nephrological support of therapy include a variety of measures consisting in dose adjustment of drugs taking into account their potential nephrotoxicity, prevention and treatment of AKI, exposure to specific pathogenetic mechanisms of kidney injury (treatment of thrombotic microangiopathy, immunocomplex organ damage, increased clearance of IG deposits), kidney functional evaluation over time and its correction, assessment of the renal response, as well as the use of extracorporeal LC elimination. The latter include renal replacement therapy, such as hemodialysis/ hemodiafiltration with high cut-off membranes, as well as SUPRA-HFR (haemodiafiltration with ultrafiltrate regeneration by adsorption on resin). These techniques make it possible to remove free LCs from the body and reduce their toxic effect on tissues and organs, thereby increasing the effectiveness of treatment [66–68]. Also, it is important to prepare potential kidney allograft recipients and include such patients on a waiting list. Given the high frequency of MGRS return to the kidney transplant, the first step is to perform clone specific therapy and consolidate the hematological response using autoHSCT [69].

Consensus is not intended to elucidate MGRS treatment. Issues relating to the treatment of the discussed nosology will be described in detail further in the form of quidelines.

 Table 4. Drugs and Methods Used to Treat Clonal B Cell Line Proliferation [17]

Cytostatics (cyclophosphamide, bendamustine, chlorambucil, fludarabine, doxorubicin, vincristine, melphalan, etc.)

Corticosteroids (dexamethasone, prednisolone)

Proteasome inhibitors (bortezomib, carfilzomib, etc.)

Monoclonal antibodies (anti-CD20: rituximab, obinutuzumab, ofatumumab; anti-CD 38: daratumumab; etc.)

Bruton tyrosine kinase inhibitors (ibrutinib)

Immunomodulators (lenalidomide, pomalidomide, etc.)

High-dose polychemotherapy followed by autologous transplantation of hematopoietic stem cells

Issues Considering MGRS Treatment in the Russian Federation

At present, in the Russian Federation, MGRS is not considered as a nosology in practical medicine, and such patients are formally assigned to the MGUS group or cases of B cell proliferation without criteria for initiating therapy. As a result of the conventional, but now outdated notions that an exclusively malignant tumor clone should be treated in cases of MG, effective clone specific chemotherapy (bortezomib, lenalidomide, rituximab, etc.) is provided only for patients with malignant forms of MG: MM, lymphomas, CLL. At the same time, MGRS patients, including AL amyloidosis, that do not meet the formal criteria of malignancy, are not included in the programs for providing the necessary medicines (Federal Law No. 299 of August 3, 2018 "On Amending the Federal Law 'On Fundamental Healthcare Principles in the Russian Federation") and are left without the opportunity to receive therapy that is adequate to the nature and prognosis of the disease. Certainly, this approach to MGRS is unacceptable. The inaccessibility of treatment, primarily due to the fact that the diagnosis "is not listed", as well as due to a lack of understanding of the true nature of the disease and underestimation of its clinical and prognostic value, is detrimental to patients [70]. Patients with this disorder should be provided with the necessary drugs and the possibility of treatment via the high-tech funding channel, including autoHSCT.

Prerequisites for the Establishment of an Onconephrological Center

Renal disorders associated with MG stand at the intersection of two specialties — hematology and nephrology. The understanding of the urgency of this problem in the world has led to the emergence of a new highly specialized field — onconephrology [71, 72]. Obviously, the diagnosis of MGRS, monitoring and treatment of such patients should be conducted in a specialized onconephrological center. The experience of creating and operating such centers was implemented abroad [73]. In the Russian Federation, an onconephrological center can

be established at a multidisciplinary hospital, which includes departments of hematology, nephrology, renal replacement therapy, stem cell and kidney transplantation. Another determining factor is the availability of proper diagnostic resources, including an immunomorphological laboratory, which has the necessary techniques for full MGRS diagnosis. It should be noted that the interests of oncone-phrology are not limited only to renal diseases associated with MG, but include acute kidney injury as a result of treatment of tumor processes, renal lesions associated with solid tumors and hematopoietic stem cell transplantation, secondary tumors in patients with renal allograft, etc. [74].

Conclusion of Consensus of Hematologists and Nephrologists on MGRS

MGRS is not an independent renal disease, a "chronic glomerulonephritis", but a condition in which kidney injury is secondary to clonal B cell proliferation. In other words, MGRS is a precancerous disease in combination with CKD that requires immediate treatment. The latter, however, is not possible for patients in the Russian Federation due to the absence of MGRS diagnosis on the list of nosologies, and therefore, the lack of assistance in case of this disorder.

Within the framework of this consensus, nephrologists and hematologists of national leading clinics came to a collective opinion on MGRS and have submitted a number of proposals for consideration by the professional community and public health authorities of the Russian Federation, the implementation of which will significantly improve the diagnosis and treatment of this category of patients.

The Final Provisions of the Consensus are as Follows:

1. MGRS is a group of diseases in which kidney injury occurs as a result of the pathological action of a monoclonal protein (immunoglobulin or its fragment) produced by a tumor clone of the B cell line of differentiation. At the same time, there are no criteria to start specific therapy for a lymphatic tumor.

2. MGRS is a heterogeneous group of diseases in which the result of the action of a monoclonal

protein on renal tissue can be different, but inevitably leads to progressive renal dysfunction, up to a complete loss of organ function and a decrease in life expectancy.

- 3. Taking into account the extremely unfavorable prognosis of renal function and life, MGRS should be included in the register of "life-threatening and chronic progressive (orphan) diseases that lead to a reduction in patients' life expectancy or disability", in the form of a generic name that combines a number of separate nosologies, including AL amyloidosis, monoclonal deposit deposition disease, etc. (Table 2).
- 4. Diagnosis of clonal proliferation in case of MGRS requires immunophenotypic and molecular examination aimed at identifying a "small" clone, including paraprotein in blood and urine using immunofixation and determination of free light chains using Freelite or other methods that have been proven to be comparable with Freelite. These methods should be available, first of all, in specialized oncohematological centers, as well as in other large hospitals in the Russian Federation, as they are the basis not only for primary hematological diagnosis, but also for assessing the effectiveness of treatment and the progression of the disease.
- 5. Along with the identification of a tumor clone, the diagnosis of MGRS requires a mandatory kidney biopsy with morphological examination to confirm a specific organ lesion. The morphological examination of kidney bioptate should include light-optical, immunomorphological, and ultrastructural methods. The main feature of MGRS is a presence of organized and/or unorganized deposits of monoplastic paraprotein in kidney compartments. The type of monoclonal paraprotein detected in blood serum or in urine should be the same as the type of monoclonal protein, morphologically determined and causing kidney injury.
- 6. The diagnosis of MGRS should be discussed by a consilium consisting of a hematologist, nephrologist and renal pathologist and should be based on a presence of a pathogenetic relationship between kidney injury and the existing monoclonal proliferation: a clone of a B lymphocyte / plasma cell and/or paraprotein detected in serum/blood.
- 7. Any variant of MGRS requires the initiation of clone specific treatment, the ultimate goal of which is to preserve renal function and prevent the clone

from progressing towards the tumor process. The nature of chemotherapy depends on the type of clonal proliferation. Treatment should be prescribed and performed on a multidisciplinary basis in accordance with the type of clone/paraprotein and the features of kidney injury by a hematologist and nephrologist with similar experience.

- 8. The group of hematological diseases combined by the term MGRS should be included on the list of disorders which require prescribing expensive chemotherapeutic drugs. Patients should receive treatment via the "high technology" funding channel.
- 9. Consolidation of the hematological response can be achieved by using high-dose polychemotherapy followed by autoHSCT. Therefore it is advisable to expand the indications for autoHSCT and include other types of MGRS, in addition to AL amyloidosis, in the standards for providing this type of care.
- 10. For successful diagnosis, timely effective treatment of MGRS and long-term monitoring of patients with this disorder, it is advisable to open specialized departments/centers of oncological nephrology in institutions with proper resources for diagnosis and treatment and qualified medical personnel with relevant experience in oncohematology and nephrology.
- 11. Based on the consensus provisions, it is advisable to create national guidelines for this clinical issue.

¹⁵ The consensus participants reviewed and expressed solidarity on behalf of the professional communities:

On Behalf of the Association of Nephrologists of Russia and the Scientific Society of Nephrologists of Russia

Name, city Vatazin Pres Andrey phre Vladimirovich part (Moscow) of t Inst cow Inst nal

President of the Association of Nephrologists, Head of the Surgical Department of Kidney Transplantation of the State Budgetary Healthcare Institution M.F. Vladimirsky Moscow Regional Research and Clinical Institute (MONIKI), Chief External Nephrologist of the Ministry of Health of the Russian Federation in the Central Federal District, Deputy Chairman of the Relevant Commission of the Ministry of Health of the Russian Federation in the specialty "Nephrology", Doctor of Medical Sciences, Professor

Position, place of work

Kayukov
Ivan Glebovich
(Saint
Petersburg)

Head of the Laboratory of Clinical Physiology of Kidneys, Research Institute of Nephrology, Professor of the Department of Nephrology and Dialysis, Postgraduate Faculty of the State Budgetary Educational Institution of Higher Professional Education I.P. Pavlov First Saint Petersburg State Medical University, Doctor of Medical Sciences, Professor

Kucher Anatoly Grigorievich (Saint Petersburg)

Professor of the Department of Propaedeutics of Internal Diseases with a clinic, Deputy Director for Medical Work of the Scientific and Clinical Research Center of the State Budgetary Educational Institution of Higher Professional Education I.P. Pavlov First Saint Petersburg State Medical University, Doctor of Medical Sciences, Professor

Popova Svetlana Ivanovna (Samara)

Head of the Nephrology Department (outpatient) of the Consultative Clinic of the Main Building of the Samara Regional Clinical Hospital named after V.D. Seredavin

Prokopenko Elena Ivanovna (Moscow)

Chairman of the Association of Nephrologists of the Central Federal District, Professor of the Department of Transplantology, Nephrology and Artificial Organs of the State Budgetary Healthcare Institution M.F. Vladimirsky Moscow Regional Research and Clinical Institute (MONIKI), Doctor of Medical Sciences

Pushtov Aleksey Aleksandrovich (Samara)

Head of the Nephrology Department of the State Health Institution Samara Regional Clinical Hospital named after M.I. Kalinin, Chief External Specialist in Nephrology of the Ministry of Health of the Russian Federation, Samara Region

Rumyantsev Aleksandr Shalikovich (Saint Petersburg)

Professor of the Department of Propaedeutics of Internal Diseases with the Clinic of the State Budgetary Educational Institution of Higher Professional Education I.P. Pavlov First Saint Petersburg State Medical University, Professor of the Department of Faculty Therapy, Faculty of Medicine, Saint Petersburg State University, Doctor of Medical Sciences, Professor

On Behalf of the National Hematology Society, F

Russian Society of Oncohematologists				
Name, city	Position, ρlace of work			
Davydkin Igor Leonidovich (Samara)	Head of the Department and Clinic of Hospital Therapy with a Course on Outpatient Therapy and Trans- fusiology, Vice-Rector for Scientific and Innovative Work, Chief Exter- nal Hematologist of the Ministry of Health of the Samara Region, Doctor of Medical Sciences, Professor			
Kulagin Aleksandr Dmitrievich (Saint Petersburg)	Professor of the Department of Hematology, Transfusiology, Transplantology, Postgraduate Faculty; Deputy Chief Physician for Hematology, Oncohematology and Rheumatology of the State Budgetary Educational Institution of Higher Professional Education I.P. Pavlov First Saint Petersburg State Medical University, Doctor of Medical Sciences			
Ptushkin Vadim Vadimovich (Moscow)	Deputy Chief Physician for Hematology, Chief Hematologist of S.P. Botkin City Clinical Hospital at the Moscow Department of Health, Professor at the Department of Oncology, Hematology and Radiation Therapy, Russian National Research Medical University named after N.I. Pirogov, Doctor of Medical Sciences, Professor			
Rekhtina Irina Germanovna (Moscow)	Head of the Department of Chemotherapy of Plasma Cell Dyscrasia, Federal State Budgetary Institution National Medical Research Center for Hematology of the Ministry of Health of the Russian Federation, Doctor of Medical Sciences			
Smirnova Anna Gennadyevna (Saint Petersburg)	Head of the Outpatient Department of the R.M. Gorbacheva Memorial Institute of Pediatric Oncology, He- matology and Transplantology, Can- didate of Medical Sciences			
Shatokhin Yuri Vasilievich (Rostov-on- Don)	Head of the Department of Hematology and Transfusiology of the Advanced Training Faculty and Professional Retraining of Medical Specialists with a Course on Clinical Laboratory Diagnostics, Genetics and Laboratory Genetics, Head of the Hematology Department of the FSBEI HE Rostov State Medical University, Ministry of Health of the Russian Federation, Head External Hematologist of the Southern Federal District, North-Caucasian Federal District, Doctor of Medical Sciences,			

Professor

On Behalf of the Russian Society of Pathologists

Name, city	Position, ρlace of work
Baykov Vadim Valentinovich (Saint Petersburg)	Head of the Laboratory of Pathomorphology, R.M. Gorbacheva Memorial Institute of Pediatric Oncology, Hematology and Transplantation. Professor of the Department of Pathology of the SBEI HPE I.P. Pavlov First Saint Petersburg State Medical University, Member of the Relevant Commission of the Ministry of Health of the Russian Federation in the Specialty "Molecular Medicine", Doctor of Medical Sciences
Sipovsky Vasily Georgievich (Saint Petersburg)	Head of the Laboratory of Clinical Immunology and Morphology of Re- search Institute of Nephrology, SBEI HPE I.P. Pavlov First Saint Petersburg State Medical University, Candidate of Medical Sciences
Stolyarevich Ekaterina Sergeevna (Moscow)	Professor, Department of Nephrology, Postgraduate Education Division of A.I. Yevdokimov Moscow State Uni- versity of Medicine and Dentistry, Pa- thologist at the City Clinical Hospital No. 52 of Moscow, Doctor of Medical Sciences
Todorov Sergey Sergeevich (Rostov-on- Don)	Head of the Morphological Department of FSBEI HE Rostov State Medical University of the Ministry of Health of the Russian Federation, Doctor of Medical Sciences
Vorobieva Olga Alekseevna (Saint Petersburg)	Pathologist, Department of Nephro- pathology and Complex Morpho- logical Research, National Center for Clinical Morphological Diagnostics, Head of the Department of Pathology of Native and Transplanted Kidney, Candidate of Medical Sciences
Lebedev Kirill Igorevich (Saint Petersburg)	Junior Researcher, Laboratory of Clinical Immunology and Morphol- ogy, Research Institute of Nephrol- ogy, SBEI HPE I.P. Pavlov First Saint Petersburg State Medical University

References:

- Leung N., Bridoux F., Hutchison C.A. et al. Monoclonal gammopathy of renal significance: when MGUS is no longer undetermined or insignificant. Blood 2012;120(22):4292– 4295. doi: 10.1182/blood-2012-07-445304
- Leung N., Bridoux F., Batuman V. et al. The evaluation of monoclonal gammopathy of renal significance: a consensus report of the International Kidney and Monoclonal Gammopathy Research Group. Nat Rev Nephrol 2019;15(1):45–59. doi: 10.1038/s41581-018-0077-4
- 3. Kozlovskaya L. V., Rameev V. V., Kogarko I. N., etc. Renal lesions associated with monoclonal gammopathies of undetermined significance: clinical forms, mechanisms of

- development, approaches to treatment. Klin. med. 2016; 94(12): 892–901 [in Russian]. doi: 10.18821/0023-2149-2016-94-12-892-901
- 4. Khrabrova M. S., Dobronravov V. A., Smirnov A. V. Renal lesions associated with monoclonal gammopathy: single-center study. Nephrology 2018;22(6):38–46 [in Russian]. doi: 10.24884/1561-6274-2018-22-6-38-46
- 5. Zakharova E.V., Stolyarevich E.S. Features of nephropathy in lymphoproliferative and plasma cell diseases (experience of one center). Clinical Medicine Almanac 2014; (30): 3–11. doi: 10.18786/2072-0505-2014-30-3-11
- 6. Zakharova E. V, Stolyarevich E. S. Renal consequences of Lymphoproliferative Disorders and Monoclonal Gammopathy. Urol Nephrol Open Access 2015;2(4):47–55. doi: 10.15406/unoaj.2015.02.00047
- 7. Zand L., Nasr S.H., Gertz M.A. et al. Clinical and prognostic differences among patients with light chain deposition disease, myeloma cast nephropathy and both. Leuk Lymphoma 2015;56(12):3357–3364. doi: 10.3109/10428194.2015
- Lin J., Markowitz G. S., Valeri A. M. et al. Renal monoclonal immunoglobulin deposition disease: the disease spectrum. J Am Soc Nephrol 2001;12(7):1482–1492
- Nasr S. H., Valeri A. M., Cornell L. D. et al. Renal monoclonal immunoglobulin deposition disease: A report of 64 patients from a single institution. Clin J Am Soc Nephrol 2012;7:231–239
- Nasr S. H., Valeri A. M., Cornell L. D. et al. Fibrillary glomerulonephritis: A report of 66 cases from a single institution. Clin J Am Soc Nephrol 2011;6:775–784
- 11. Steiner N., Göbel G., Suchecki P. et al. Monoclonal gammopathy of renal significance (MGRS) increases the risk for progression to multiple myeloma: an observational study of 2935 MGUS patients. Oncotarget 2017;9(2):2344–2356. doi: 10.18632/oncotarget.23412
- 12. Kourelis T. V., Nasr S. H., Dispenzieri A. et al. Outcomes of patients with renal monoclonal immunoglobulin deposition disease. Am J Hematol 2016;91(11):1123–1128. doi: 10.1002/ajh.24528
- 13. Cohen C., Royer B., Javaugue V. et al. Bortezomib produces high hematological response rates with prolonged renal survival in monoclonal immunoglobulin deposition disease. Kidney Int 2015;88:1135–1143
- Ziogas D. C, Kastritis E., Terpos E., Roussou M. et al. Hematologic and renal improvement of monoclonal immunoglobulin deposition disease after treatment with bortezomib-based regimens. Leuk Lymphoma 2017; 58(8):1832–1839. doi: 10.1080/10428194.2016.1267349
- Gumber R., Cohen J. B., Palmer M. B. et al. A clone-directed approach may improve diagnosis and treatment of proliferativeglomerulonephritis with monoclonal immunoglobulin deposits. Kidney Int 2018;94(1):199–205. doi: 10.1016/j.kint.2018.02.020
- 16. Mendeleeva L. P., Votyakova O. M., Pokrovskaya O. S. et al. National clinical recommendations on diagnosis and treatment of multiple myeloma. Hematology and Transfusiology. Russian journal (Gematologiya i transfusiologiya) 2016;61(1,Suppl.2): 1–24. (In Russ.) doi: 10.18821/0234-5730-2016-61-1

- 17. Russian clinical guidelines for the diagnosis and treatment of lymphoproliferative diseases under the guidance of Prof. I. V. Poddubnaya, Prof. V. G. Savchenko. 2016 access mode: http://www.hematology.ru/oncohematology/standarts/clinical_guidelines-draft.pdf
- Dimopoulos M. A., Sonneveld P., Leung N. et al. International Myeloma Working Group Recommendations for the Diagnosis and Management of Myeloma-Related Renal Impairment. J Clin Oncol 2016;34(13):1544–1557. doi: 10.1200/JCO.2015.65.0044
- Clinical recommendations for the examination and treatment of patients with chronic lymphocytic leukemia (2014). A team of authors led by Acad. V. G. Savchenko, Prof. I. V. Poddubnaya. Access mode: https://blood.ru/ documents/clinical%20guidelines/26.%20klinicheskierekomendacii-2014-xll.pdf
- Swerdlow S. H, Campo E., Pileri S. A. et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016;127(20):2375–2390. doi: 10.1182/blood-2016-01-643569
- 21. Kyle R.A. Monoclonal gammopathy of undetermined significance. Natural history in 241 cases. Am J Med 1978;64(5):814–826
- 22. Vardi A., Dagklis A., Scarfò L. et al. Immunogenetics shows that not all MBL are equal: the larger the clone, the more similar to CLL. Blood 2013;121(22):4521–4528. doi: 10.1182/blood-2012-12-471698
- 23. Kyle R. A., Benson J., Larson D. et al. IgM monoclonal gammopathy of undetermined significance and smoldering Waldenström's macroglobulinemia. Clin Lymphoma Myeloma 2009;9(1):17–18. doi: 10.3816/CLM.2009.n.002
- 24. Rajkumar S. V., Kyle R. A., Buadi F. K. Advances in the diagnosis, classification, risk stratification, and management of monoclonal gammopathy of undetermined significance: implications for recategorizing disease entities in the presence of evolving scientific evidence. Mayo Clin Proc 2010;85(10):945–948. doi: 10.4065/mcp.2010.0520
- 25. Merlini G., Stone M.J. Dangerous small B cell clones. Blood 2006;108 (8):2520–2530. doi: 10.1182/ blood-2006-03-001164
- 26. Fermand J. P., Bridoux F., Dispenzieri A. et al. Monoclonal gammopathy of clinical significance: a novel concept with therapeutic implications. Blood 2018;132(14):1478–1485. doi: 10.1182/blood-2018-04-839480
- 27. Gertz M.A. Waldenström macroglobulinemia: 2018 update on diagnosis, risk stratification, and management. Am | Hematol 2018; 1–11. doi: 10.1002/ajh.25292
- 28. Fish R., Pinney J., Jain P. et al. The Incidence of major hemorrhagic complications after renal biopsies in patients with monoclonal gammopathies. Clin J Am Soc Nephrol 2010;5(11):1977–1980. doi: 10.2215/CJN.00650110
- 29. Matsushita K., van der Velde M., Astor B. C. et al. Chronic Kidney Disease Prognosis Consortium. Association of estimated glomerular filtration rate and albuminuria with allcause and cardiovascular mortality in general population cohorts: a collaborative metaanalysis. Lancet 2010;375(9731):2073–2081
- 30. Smirnov A. V., Dobronravov V. A., Kayukov I. G. Cardiorenal continuum: pathogenetic basis of preventive

- nephrology. Nephrology 2005;9(3):7–15 [in Russian]. doi: 10.24884/1561-6274-2005-9-3-7-15
- 31. Thomas B., Matsushita K., Abate K. H. et al. Global Cardiovascular and Renal Outcomes of Reduced GFR. J Am Soc Nephrol 2017;28(7):2167–2179. doi: 10.1681/ASN.2016050562
- 32. van der Velde M., Matsushita K., Coresh J. et al. Chronic Kidney Disease Prognosis Consortium: Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int 2011;79:1341–1352
- 33. Hui X., Matsushita K., Sang Y. et al. CKD and cardiovascular disease in the Atherosclerosis Risk in Communities (ARIC) study: Interactions with age, sex, and race. Am J Kidney Dis 2013; 62: 691–702
- 34. Kyle R. A., San-Miguel J. F., Mateos M. V., Rajkumar S. V. Monoclonal gammopathy of undetermined significance and smoldering multiple myeloma. Hematol Oncol Clin North Am 2014;28(5):775–790. doi: 10.1016/j. hoc.2014.06.005
- 35. Buxbaum J. N., Hurley M. E., Chuba J., Spiro T. Amyloidosis of the AL type. Clinical, morphologic and biochemical aspects of the response to therapy with alkylating agents and prednisone. Am J Med 1979;67(5):867–878
- Benson M. D. Treatment of AL amyloidosis with melphalan, prednisone, and colchicine. Arthritis Rheum 1986;
 29(5):683–687
- Vaxman I., Gertz M. Recent Advances in the Diagnosis, Risk Stratification, and Management of Systemic Light-ChainAmyloidosis. Acta Haematol 2019;141(2):93–106
- 38. Zakharova E. V., Stolyarevich E. S. Chemotherapy for renal AL amyloidosis: treatment results and outcomes in 49 patients from a single center. Clinical Practice 2016; 13(1):11–18
- 39. Fermand J. P., Bridoux F., Kyle R. A. et al. How I treat monoclonal gammopathy of renal significance (MGRS). Blood 2013;122(22):3583–3590. doi: 10.1182/blood-2013-05-495929
- 40. Heilman R. L., Velosa J. A., Holley K. E. et al. Long-term follow-up and response to chemotherapy in patients with light-chain deposition disease. Am J Kidney Dis 1992;20(1):34–41
- 41. Cohen C., Royer B., Javaugue V. et al. Bortezomib produces high hematological response rates with prolonged renal survival in monoclonal immunoglobulin deposition disease. Kidney Int 2015; 88: 1135–1143
- 42. Gavriatopoulou M., Musto P., Caers J. et al. European myeloma network recommendations on diagnosis and management of patients with rare plasma cell dyscrasias. Leukemia 2018; 32(9):1883–1898. doi: 10.1038/s41375-018-0209-7
- 43. Ziogas D. C., Kastritis E., Terpos E. et al. Hematologic and renal improvement of monoclonal immunoglobulin deposition disease after treatment with bortezomib-based regimens. Leuk Lymphoma 2017;58(8):1832–1839. doi: 10.1080/10428194.2016.1267349
- 44. Nasr S. H., Markowitz G. S., Stokes M. B. et al. Proliferative glomerulonephritis with monoclonal IgG deposits:

- a distinct entity mimicking immune-complex glomerulonephritis. Kidney Int 2004; 65(1):85–96
- 45. Nasr S. H., Snyder R. W., Bhagat G., Markowitz G. S. Chronic lymphocytic leukemia and cryoglobulinemic glomerulonephritis. Kidney Int 2007;71(2):93
- 46. Herrera G. A., Joseph L., Gu X. et al. Renal pathologic spectrum in an autopsy series of patients with plasma cell dyscrasia. Arch Pathol Lab Med 2004;128(8):875–879
- 47. Ciocchini M., Arbelbide J., Musso C. G. Monoclonal gammopathy of renal significance (MGRS): the characteristics and significance of a new meta-entity. Int Urol Nephrol 2017;49(12):2171–2175. doi: 10.1007/s11255-017-1594-y
- 48. Kanzaki G., Okabayashi Y., Nagahama K. et al. Monoclonal Immunoglobulin Deposition Disease and Related Diseases. J Nippon Med Sch 2019;86(1):2–9. doi: 10.1272/jnms. JNMS.2019_86-1
- 49. Caravaca-Fontán F., Gutiérrez E., Delgado Lillo R., Praga M. Monoclonal gammopathies of renal significance. Nefrologia 2017;37(5):465–477. doi: 10.1016/j.nefro.2017.03.012
- 50. Mehtat Ünlü Ş., Özsan H., Sarıoğlu S. et al. The Scope of Kidney Affection in Monoclonal Gammopathies at All Levels of Clinical Significance. Turk J Haematol 2017;34(4):282–288. doi: 10.4274/tjh.2017.0197
- 51. Sethi S., Rajkumar S. V. Monoclonal gammopathyassociated proliferative glomerulonephritis. Mayo Clin Proc 2013; 88(11):1284–1293. doi: 10.1016/j. mayocp.2013.08.002
- 52. Bridoux F., Leung N., Hutchison C.A. et al. Diagnosis of monoclonal gammopathy of renal significance. Kidney Int 2015; 87(4):698–711. doi: 10.1038/ki.2014.408
- 53. Access mode:
 https://icd.who.int/browse11/l-m/en#/http%3a%2f%2fid.
 who.int%2ficd%2fentity%2f1815409370
 [Available at:
 https://icd.who.int/browse11/l-m/en#/http%3a%2f%2fid.
 who.int%2ficd%2fentity%2f1815409370]
- 54. Sethi S., Rajkumar S. V., D'Agati V. D. The Complexity and Heterogeneity of Monoclonal Immunoglobulin-Associated Renal Diseases. J Am Soc Nephrol 2018;29(7):1810–1823. doi: 10.1681/\
- 55. Larsen C. P., Messias N. C., Walker P. D. et al. Membranoproliferative glomerulonephritis with masked monotypic immunoglobulin deposits. Kidney Int 2015;88(4):867– 873. doi: 10.1038/ki.2015.195
- 56. Nasr S. H., Fidler M. E., Said S. M. Paraffin Immunofluorescence: A Valuable Ancillary Technique in Renal Pathology. Kidney Int Rep 2018;3(6):1260–1266. doi: 10.1016/j. ekir.2018.07.008
- Messias N. C., Walker P. D., Larsen C. P. et al. Paraffin immunofluorescence in the renal pathology laboratory: more than a salvage technique. Mod Pathol 2015;28(6):854–860. doi: 10.1038/modpathol.2015.1
- 58. Alexander M. P., Dasari S., Vrana J. A. et al. Congophilic Fibrillary Glomerulonephritis: A Case Series. Am J Kidney Dis 2018; 72(3):325–336. doi: 10.1053/j.ajkd.2018.03.017
- 59. Nasr S. H., Vrana J. A., Dasari S. et al. DNAJB9 Is a Specific Immunohistochemical Marker for Fibrillary Glomerulonephritis. Kidney Int Rep 2017;3(1):56–64. doi: 10.1016/j. ekir.2017.07.017

- 60. Herrera G. A., Sanders P. W., Reddy B. V. Ultrastructural immunolabeling: a unique diagnostic tool in monoclonal light chain–related renal diseases. Ultrastruct Pathol 1994;18:401–416
- 61. Gu X., Herrera G. A. Light-chain-mediated acute tubular interstitial nephritis: a poorly recognized pattern of renaldisease in patients with plasma cell dyscrasia. Arch Pathol Lab Med 2006;130(2):165–169
- 62. Royal V., Quint P., Leblanc M. et al. IgD heavy-chain deposition disease: detection by laser microdissection and mass spectrometry. J Am Soc Nephrol 2015;26(4):784–790. doi: 10.1681/ASN.2014050481
- 63. Leung N., Barnidge D.R., Hutchison C.A. et al. Laboratory testing in monoclonal gammopathy of renal significance (MGRS). Clin Chem Lab Med 2016;54(6):929–937. doi: 10.1515/cclm-2015-0994
- 64. Rosner M. H., Edeani A., Yanagita M. et al. Paraprotein–related kidney disease: diagnosing and treating monoclonal gammopathy of renal significance. Clin J Am Soc Nephrol 2016;11(12): 2280–2287. doi: 10.2215/CJN.02920316
- 65. Gertz M.A. Immunoglobulin light chain amyloidosis: 2016 update on diagnosis, prognosis, and treatment. Am J Hematol 2016;91(9):947–956. doi: 10.1002/ajh.24433
- 66. Pasquali S., Iannuzzella F., Corrandini M. et al. A novel option for reducing free light chains in myeloma kidney: Supra-hemodiafiltration with endogenous reinfusion (HFR). J Nephrol 2015;28(2):251–254
- 67. Pendón-Ruiz de Mier M. V., Alvarez-Lara M. A. et al. Effectiveness of haemodiafiltration with ultrafiltrate regeneration in the reduction of light chains in multiple myeloma with renal failure. Nefrologia 2013;33(6):788–796
- 68. Mene P., Giammarioli E., Fofi C. et al. Serum free light chains removal by HFR hemodiafiltration in patients with multiple myeloma and acute kidney injury: a case series. Kidney Blood Press Res 2018;43(4):1263–1272
- 69. Sayed R. H., Wechalekar A. D., Gilbertson J. A. et al. Natural history and outcome of light chain deposition disease. Blood 2015;126(26):2805–2810. doi: 10.1182/blood-2015-07-658872
- Decourt A., Gondouin B., Delaroziere J. C. et al. Trends in survival and renal recovery in patients with multiple myeloma or light-chain amyloidosis on chronic dialysis. Clin J Am Soc Nephrol 2016;11(3):431–441. doi: 10.2215/ CJN.06290615
- 71. Abudayyeh A. A., Lahoti A., Salahudeen A. K. et al. Onconephrology: the need and the emergence of a subspecialty in nephrology. Kidney Int 2014;85(5):1002–1004. doi: 10.1038/ki.2014.29
- 72. Cohen E. P., Krzesinski J. M., Launay-Vacher V., Sprangers B. Onco-nephrology: Core Curriculum 2015. Am J Kidney Dis 2015;66(5):869–883. doi: 10.1053/j.ajkd.2015.04.042
- Cosmai L., Porta C., Perazella M. A. et al. Opening an onconephrology clinic: recommendations and basic requirements. Nephrol Dial Transplant 2018;33(9):1503–1510. doi: 10.1093/ndt/gfy188
- 74. Capasso A., Benigni A., Capitanio U. et al. Summary of the International Conference on Onco-Nephrology: an emerging field in medicine. Kidney Int 2019; article in press. doi: 10.1016/j.kint.2019.04.043