DOI: 10.20514/2226-6704-2020-10-4-262-271

E.A. Troshina, E.S. Senyushkina*

Endocrinology Research Centre, Moscow, Russia

Metabolic Systemic Effects Triiodothyronine

Abstract

Triiodothyronine (T_3 , 3,5,3'-L-triiodothyronine) is a thyroid hormone (thyroid), the secretion of which is carried out directly both by the gland (to a lesser extent) and outside it (the main amount; as a result of peripheral deiodination of thyroxine (T_4)). Getting into the nuclei of cells, T_3 interacts with specific nuclear receptors of target tissues, which determines its biological activity. This interaction leads to the activation of transcription of a number of genes.

In the pituitary gland and peripheral tissues, the action of thyroid hormones is modulated by local deiodinases, which convert T_4 to more active T_3 , the molecular effects of which in individual tissues depend on subtypes of T_3 receptors and their interaction with other ligands, coactivators and corepressors, as well as on the activation or repression of specific genes. The reason for the lack of T_3 production is primarily a deficiency of iodine in the diet, less often, a defect in the genes encoding the proteins that are involved in T_3 biosynthesis. As a result of the low intake of iodide in the body, the so-called adaptive mechanism is activated, which consists in increasing the proportion of synthesized T_3 , which increases the metabolic efficiency of thyroid homones. With a deficiency in the diet of such a trace element as selenium, the conversion of T_4 to T_3 is reduced.

Thyroid hormones play a vital role in the regulation of homeostasis and the metabolic rate of cells and tissues of humans and mammals. They are necessary for physical and mental development. Their insufficient production at the stage of formation of the internal organs of the fetus and in childhood can lead to various pathologies, primarily to pathology of the central nervous system, and as a result, growth retardation and mental retardation. In adulthood, hypothyroidism leads to a decrease in metabolism, memory impairment, depressive disorders, impaired fertility. Many discussions and ambiguous conclusions have been obtained regarding combination drugs (sodium levothyroxine + lyothironon) for the treatment of hypothyroidism. This article will examine the metabolic effects of T₃, the thyroid hormone with the highest activity.

Key words: thyroid gland, triiodothyronine, triiodothyronine isoforms

Conflict of interests

The authors declare no conflict of interests

Sources of funding

Search and analytical work on the preparation of the manuscript was carried out as part of the state task «Epidemiological and molecular-cellular characteristics of tumor, autoimmune and iodine deficiency thyroidopathies as the basis for the prevention of complications and personalization of treatment». Reg. Nº AAAA-A20-120011790180-4.

Article received on 15.05.2020

Accepted for publication on 06.07.2020

For citation: Troshina E.A., Senyushkina E.S. Metabolic Systemic Effects Triiodothyronine. The Russian Archives of Internal Medicine. 2020; 10(4): 262-271. DOI: 10.20514/2226-6704-2020-10-4-262-271

 D_{p} , D_{II} , D_{III} — deiodinases, DIT — diiodothyrosine, ESS — euthyroid sick syndrome, GPX — glutathione peroxidase, HF — heart failure, LT $_{5}$ — liothyronine, MIT — monoiodothyrosine, NCOR1 — nuclear receptor coregulator 1, rT $_{5}$ — reverse T $_{5}$, T $_{5}$ — triiodothyronine, T $_{4}$ — thyroxine, TBG — thyroxine-binding globulin, TG — thyroid gland, THr α — thyroid hormone receptor alpha, THr β — thyroid hormone receptor beta

*Contacts: Evgeniya S. Senyushkina, e-mail: EvgeniyaSenyushkina@yandex.ru ORCID ID: https://orcid.org/0000-0001-7960-8315

The history of the discovery of thyroid hormones

In the 20th century, important discoveries were made in the field of the biochemistry of thyroid hormones. In 1915, E. C. Kendall, an American biochemist, isolated a hormone called thyroxine (T_4) from the thyroid gland (TG). A little later, in 1927, C. R. Harington and G. Barger synthesized the hormone. Another great event was the isolation and synthesis of triiodothyronine (T_3) by J. Gross and R. Pitt-Rivers in 1953. In 1955, R. Pitt-Rivers and her colleagues suggested that T_3 is produced in vivo through T_4 conversion, but this theory remained unproven for a long time.

In 1970, L. E. Braverman et al. demonstrated the conversion of T_4 to T_3 in individuals with no TG, and Anne Fausto-Sterling et al. revealed the same in healthy subjects. Over the next decade, T₄ detection methods were improved; specially-developed radioimmune analysis allowed to determine the level of reverse T_z (r T_z , inactive) and to understand its physiological role. In 1975, D. Chopra et al. found mutual changes in T_3 and rT_3 levels in the presence of systemic diseases — somatic non-thyroid disease leads to decreased T_3 and increased rT_3 . In 1977, K. D. Burman et al. developed a radioimmunoassay for rT₃ detection, which confirmed its presence in the blood serum of healthy individuals. It was also found that rT_3 level is lower in patients with hypothyroidism who take minimal daily doses of levothyroxine sodium. Conversely, rT₃ level was high in patients with hyperthyroidism who received large doses of levothyroxine sodium. The late 70s were marked by a surge in interest in T₃ metabolites, including the development of radioimmunoassay for 3,3'-diiodothyronine $(3-3'T_2)$ [1].

T₃ biosynthesis and metabolism

 T_3 is formed as a result of the combination of diiodothyrosine (DIT) and monoiodothyrosine (MIT) molecules. It then accumulates inside the follicle in the form of a colloid. T_3 is secreted with colloid resorption with the help of proteolytic enzymes. MIT, DIT, and T_3 , which enters the bloodstream [2], are formed as a result. TG produces no more than 20% of T_3 circulating in the human body.

The rest of it and ${\rm rT_3}$ (95–98%) result from the peripheral conversion of ${\rm T_4}$ by deiodination [1]. The effect of ${\rm T_3}$ is about five times higher than that of ${\rm T_4}$ ${\rm T_3}$ half-life (${\rm T_{4/2}}$) is 1–2 days. If ${\rm T_4}$ conversion to ${\rm T_3}$ is impaired, ${\rm rT_3}$ level increases [2].

About 40% of T_4 metabolizes to form T_5 and rT_5 (Fig. 1) [2].

The T_4 molecule has four iodine atoms; the loss of one atom leads to the formation of T_3 or rT_3 depending on which atom is lost. Iodine removal from position 5' on the outer ring leads to the formation of T_3 — the most active thyroid hormone, which is produced at a rate of 30–40 μg per day. Conversely, when T_4 loses the iodine atom from position 5 on the inner ring, rT_3 is formed at a rate slightly lower than that of T_3 , i.e., from 28 to 40 μg per day. rT_3 is inactive. Both T_3 and rT_3 can give up more iodine atoms to form various isomers of T_2 , T_4 , and, ultimately, T_0 . Other pathways of thyroid hormone metabolism include glucuronidation, sulfation, oxidative deamination and cleavage of the ether bond [1].

Reactions of T_3 formation are catalyzed by three types of enzymes (deiodinases):

D_I — participates in the deiodination of inner and outer T4 rings, supplies T3 to peripheral tissues. This enzyme provides the formation of most of T3 in plasma by converting T4 into active T3, and also deactivates it; it is localized mainly in the liver, kidneys, TG, and pituitary gland, and in a smaller amount — in the central nervous system [1, 3].

 D_{II} — catalyzes the conversion of T_4 into T_3 , having effect exclusively on the outer ring of thyroid hormones, and falls in the category of

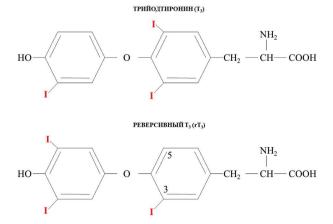


Figure 1. Forms of triiodothyronine (Adapted from Troshina E.A., 2012)

essential enzymes. D_{II} provides constant concentration of intracellular T_3 ; it is synthesized in the central nervous system, pituitary gland, brown adipose tissue, TG, placenta, skeletal muscles and the heart [1, 4].

 $m{D}_{III}$ — is responsible for the transformation of T_4 into rT_3 , deactivates T_5 and T_4 by catalyzing iodine removal from the inner ring. An inactive form — 3,3-diiodothyronine — is produced as a result. D_{III} synthesis takes place in the central nervous system, skin, hemangiomas, fetal liver, placenta, and fetal tissues [1, 3].

Free T₃ concentration in plasma is relatively constant; however, its concentration in tissues varies depending on the amount of hormone transferred and the activity of local deiodinases. The effect of T_3 depends on the duration of its binding to the nuclear receptor and the number of receptors. Under these conditions, deiodinases play an important role in maintaining concentrations of thyroid hormones in tissues and cells; signal transduction here can vary regardless of their serum concentrations. For example, T₃ production in the central nervous system by local $D_{\mbox{\tiny II}}$ is crucial for maintaining T₃ homeostasis. According to Maia A. L. et al. (2011), D_{II}, which is expressed in human TG, plays an important role in maintaining T₃ level in plasma [1-3]. There is a theory that increased expression of D_{II} in enlarged TG leads to a relatively high level of circulating T₃ with certain underlying thyroid diseases, such as McCune—Albright syndrome, T₃-thyrotoxicosis in Graves' disease, abnormalities in thyroglobulin gene. Deiodinases also modulate tissue-specific T₃ concentrations in response to iodine deficiency and changes in thyroid function. In a developing brain, D_{II} locally converts T_{II} into T₃. Iodine deficiency and hypothyroidism lead to increased $\boldsymbol{D}_{\!\scriptscriptstyle II}$ activity in tissues, especially in brain tissue, and, as a result, T_4 conversion into T_3 is locally increased [1]. In cases of hyperthyroidism, excessive expression of D₁ contributes to the relatively excessive production of T_3 , while the activation of D_{III} in the brain protects the central nervous system from excessive amounts of thyroid hormones. D_{III} is the main physiological inactivator of thyroid hormones and plays a major role in protecting tissues from the excessive amount thereof. This mechanism is crucial for fetal development and explains the high expression of D_{III} in the placenta and human fetal tissue. D_{II} and D_{III} regulate T_3 availability in the course of brain development. In tissues of adult individuals, the importance of D_{III} in the regulation of thyroid hormone homeostasis becomes apparent in the cases of certain pathophysiological conditions, such as non-thyroid diseases and malnutrition. Whenever a decrease in metabolism is "homeostatically desirable", for example, in intensive care unit patients or during fasting, T_3 formation decreases and rT_3 formation increases [1, 4, 5]. D_{III} is also activated during fetal hypoxia during delivery [6].

T₃ transport

Most of circulating T_3 is bound to plasma proteins (total T_3), and only 0.4% is free (unbound) T_3 that enters target cells [7].

Thyroxin-binding globulin (TBG), transthyretin and albumin are the main transport proteins.

In case of TBG deficiency, total T_3 concentration decreases. However, the level of free T_3 remains normal. The following may cause impaired hormone binding to protein: congenital TBG synthesis defects, taking medications (androgens, glucocorticoids, danazol, L-asparaginase), certain physiological and pathological conditions (most systemic diseases).

Excessive TBG can be caused by congenital malformations, pregnancy, estrogen-producing tumors, treatment with estrogens, 5-fluoro-uracil. TBG concentration in plasma and total T_3 level increase in this case.

In comparison with T_4 , transthyretin has less affinity for T_3 .

Among the abovementioned proteins, albumin has the lowest power of binding to T_3 , but due to its high concentration, it binds about 45% of the hormone in plasma. Due to the rapid dissociation of the protein-hormone complex, albumin is the main source of free T_3 . In cases of renal failure or liver cirrhosis accompanied by hypoalbuminemia, total T_3 level is lower, but free T_3 level remains normal [7].

Diagnostic value of total T_3 and free T_3

Total T3 has diagnostic value only in cases when the binding ability of proteins remains constant. Said constancy changes when taking certain medications, and during severe general (non-thyroid) diseases. Therefore the determination of free T3 is more significant.

Total T_3 level correlates with total T_4 in most clinical cases. The determination of total T_5 is most reasonable with underlying thyrotoxicosis, since in some cases the total T_4 level shows no significant changes, and total T_5 concentration in serum increases sharply, which allows considering the latter as a more appropriate and objective parameter. In particular, in the absence of TBG binding disorder and with normal total T_5 , thyrotoxicosis can be almost excluded.

Patients with myeloma, which produces a large amount of immunoglobulin G, or with severe liver diseases demonstrate falsely high total T_3 . Total T_3 may decrease after different surgical interventions, in cases of chronic and acute somatic diseases (for example, diabetes mellitus; HIV infection; myocardial infarction; cirrhosis; anorexia; sepsis; nephrotic syndrome, etc.).

When diagnosing possible thyroid dysfunction, the determination of total T_3 is not enough, especially in patients with hypothyroidism, when in some cases, total T_3 level remains within reference values. The following are indications for determining total and free T_3 : differential diagnosis of T_3 thyrotoxicosis; initial thyroid hyperfunction, in particular, in the presence of functional autonomy; relapse of thyrotoxicosis, symptomatically increased T_3 ; druginduced thyrotoxicosis [8].

Reverse T₃

Reverse triiodothyronine (3,3',5'-triiodothyronine, reverse T_3 , or rT_3) is a T_3 isomer. However, due to its inability to bind nuclear receptors of thyroid hormones, it is usually considered biologically inactive. Reverse T_3 suppresses the effect of nuclear T_3 . This is a result of its ability to reduce T_4 conversion into T_3 in D_{II} -expressing tissues, such as the brain. According to Rastogi L. et al. (2018), rT_3 has a neuroprotective effect during ischemic reperfusion injury in vivo and in vitro [9]. In cases of severe general diseases, rT_3 level can increase rapidly, which can also be observed in newborns, with underlying liver failure, after taking certain drugs (beta-blockers, corticosteroids, antiarrhythmic drugs) [8]. Oxidative stress, apoptosis and inflammation are the

primary mediators of tissue damage in stroke. It was noted that rT_3 reduces the induction of oxidative stress and apoptosis signaling after ischemic stroke [9]. According to Salazar P. et al. (2019), patients with Alzheimer's disease have high rT_3 and a high rT_3 to T_4 ratio in cerebrospinal fluid with a normal level of thyroid hormones in serum. T_3 inhibits the transcriptional activity of the β-amyloid precursor protein (APP) gene, which is an important risk factor for Alzheimer's disease [10].

Overall, the determination of rT_3 in serum had no clinical significance for the diagnosis of hypothyroidism in patients with systemic diseases. A retrospective study by L. A. Burmeister (1995) demonstrated that somatic non-thyroid pathology complicates the interpretation of thyroid function tests, and measuring rT₃ in serum does not allow to reliably distinguish a patient with hypothyroidism from a patient with euthyroidism. According to L. A. Burmeister, diagnosis requires the evaluation of clinical symptoms, determination of levels of free T₄ and thyroid-stimulating hormone (TSH), and patient monitoring [1]. rT₃ measurement is required only in some clinical situations. Its determination can be performed for differential diagnosis between hypothyroidism and euthyroid sick syndrome: rT₃ should always be considered in combination with TSH, free $T_{\scriptscriptstyle 3}$ and free $T_{\scriptscriptstyle 4}$, taking into account clinical evidence. Table 1 shows changes in the levels of thyroid hormones depending on the severity of systemic disease (as non-thyroid pathology progresses, more significant changes in thyroid function are registered; disease severity is defined conventionally; ultimately, everything depends on the initial and underlying disease).

The utility of determining rT_3 in an outpatient setting is debatable. Sometimes it is difficult to make a differential diagnosis between hypothyroidism and non-thyroidal illness syndrome in intensive care units. rT_3 can be low, normal or high regardless of thyroid function. Also, endogenous changes in the hypothalamus — pituitary — thyroid axis can be exacerbated by drugs commonly used in intensive care units, such as dopamine and glucocorticoids. Changes in thyroid function should be evaluated based on clinical evidence. However, regardless of the T_3 level, thyroid hormone replacement therapy should not be prescribed without taking into account the general clinical status of the patient; controlled

Severity of disease	TSH	$\operatorname{Total} \operatorname{T}_3$	Free T ₄	Reverse T ₃	Probable cause
mild	no changes	slightly decreased	no changes	slightly increased	$\mathbf{D}_{\!\scriptscriptstyle \mathrm{I}}, \mathbf{D}_{\!\scriptscriptstyle \mathrm{II}}$ slightly decreased
moderate	no changes or slightly decreased	decreased	no changes or moderately increased or decreased	increased	$\begin{array}{c} D_{\rm p}, D_{\rm II} \ {\rm decreased}; \\ {\rm slightly \ increased \ } D_{\rm III} \\ {\rm is \ } {\rm \rhoossible} \end{array}$
severe	decreased	significantly decreased	slightly decreased	slightly increased	$\begin{array}{c} D_{\rm p}, D_{\rm II} \ {\rm decreased}; \\ {\rm slightly \ increased \ } D_{\rm III} \\ {\rm is \ } {\rm \rhoossible} \end{array}$
recovery	slightly increased	slightly decreased	slightly decreased	slightly increased	unknown

Table 1. Changes in the levels of thyroid hormones depending on the severity of systemic disease

 $\textbf{Note:} \ \text{TSH-thyroid-stimulating hormone; total} \ T_{5} - \text{total triiodothyronine; free} \ T_{4} - \text{free thyroxine; reverse} \ T_{5} - \text{reverse triiodothyronine}$

studies showed no evidence that such therapy is beneficial [1]. In cases of mild non-thyroidal somatic diseases, concentrations of free T₃ and TSH may be low. Patients often have abnormal rT₃ levels in blood serum even though TSH is within reference values. Therefore, it makes no sense to determine rT_z . The only relevant test for initiating or adjusting treatment with levothyroxine sodium is the measurement of the TSH level. If the decision to prescribe replacement therapy is based on rT_3 only, always consider the possibility of drug overdose, which can lead to subclinical or even clinical thyrotoxicosis. The discovery of molecular mechanisms that lead to D_{III} reactivation in cases of different diseases, such as HIV infection, chronic heart failure (CHF), and anorexia, is an important field of research today [1].

Effect of thyroid hormones on the development of the central nervous system

Physiological concentrations of thyroid hormones in brain tissue are crucial for pre- and postnatal development and for the regulation of the most important cellular mechanisms. Hypothyroidism in pregnant women significantly increases the risk of autism in the child, and low perinatal levels of thyroid hormones are associated with persistent cognitive impairment and attention deficit. Biosynthesis of T_4 , its conversion to T_5 and activation of thyroid hormone receptors are vital processes for normal brain development.

In the developing fetal brain, D_{II} locally converts T_4 to T_5 . D_{III} is responsible for the decrease in the cellular level of T_5 .

There are two types of thyroid hormone receptors: THr α and THr β . THr α is widely expressed in the brain, THr β — mainly in subcortical areas. Alternative splicing leads to the formation of two variants of THr α — α 1 and α 2. T_3 -dependent transcription is mediated by THr α 1. THr α 2 does not bind to T_3 and suppresses T_3 -dependent transcription. The effect of thyroid hormones at the brain formation and development stages can be increased or decreased by changing the expression levels of THr α 1 and THr α 2.

Transcriptional coregulators (activators/repressors) can adjust T_3 -dependent transcription. Nuclear receptor coregulator 1 (NCOR1) is particularly important for regulating the action of thyroid hormones in vivo. Coactivator MED1 (mediator of RNA polymerase II transcription subunit 1) induces T_3 -dependent transcription, which can enhance the effect of thyroid hormones and counteract NCOR1. Local activation of thyroid hormone signaling is achieved at the early stage of development and during brain formation by increasing the activity of D_{II} , $TH\alpha 1$ and MED1. The activation of D_{III} , $THr\alpha 2$ and NCOR1 at the final stage of brain formation can inhibit the action of thyroid hormones and changes in gene expression.

TG dysfunction at an early age can significantly impact cerebellar-mediated motor function. Hypothyroidism leads to functional and structural changes within the cerebellum, hippocampus, cortex, and subcortical nuclei. Abnormal formation of cerebellar-cortical connections leads to autism. Normal TG function in the perinatal period is vital for the development of various behavior in vertebrates. According to Törel Ergür

A. (2012), perinatal levels of thyroid hormones are the basis for the development of various behavior in humans, rodents, birds, and fish [10, 11].

Children with congenital hypothyroidism are characterized by cognitive disorders, impaired speech and motor function. According to the study performed by Törel Ergür A. (2012), subclinical hypothyroidism in children and adolescents correlates with attention deficit. The study performed by Resch U. (2002) demonstrated that low levels of thyroid hormones in patients with manifest and subclinical hypothyroidism are associated with the development of oxidative stress [10]. Mechanisms underlying it have not been studied yet [10].

T₃ and iodine deficiency disorders

Iodine is an essential trace element for the synthesis of thyroid hormones that regulate metabolic processes in most cells and play a key role in the growth and development of the human body.

Iodine deficiency disorders (IDD) are a global public health problem. Their prevention is primarily associated with the prevention of brain formation disorders at the embryonic development stage. Additional intake of iodine preparations in early pregnancy and lactation allows eliminating the adverse effects of iodine deficiency [11].

Severe, prolonged iodine deficiency results in impaired synthesis and secretion of thyroid hormones. Iodine deficiency and decreased production of thyroid hormones lead to the increase of the MIT/DIT ratio in thyroglobulin and to the increase of T_3 secreted by TG. The hypothalamic-pituitary system responds by increasing TSH levels, which is accompanied by an increase in TG size. Due to this compensatory mechanism, hypothyroidism is briefly compensated. It is extremely important to note that thyroid hormone deficiency in newborns and infants leads to irreversible damage to the nervous system and other systems [11].

In addition to the formation of the central nervous system (CNS), other vital functions of T_3 should be noted:

 T₃ regulates the development of bone zones of fetal development and linear bone growth, and is also responsible for endochondral ossification and maturation of epiphyseal centers of

- ossification after birth. In adults, T_3 participates in bone remodeling and ensures the degradation of mucopolysaccharides and fibronectin in extracellular connective tissue.
- T₅ stimulates the breathing rate at rest and minute pulmonary ventilation, thereby normalizing oxygen concentration in arterial blood as compensation for the increase in oxidation rate. T₅ also contributes to the delivery of oxygen to tissues, simulating the production of erythropoietin and hemoglobin. It also facilitates the absorption of folate and cobalamin in the gastrointestinal tract [12].

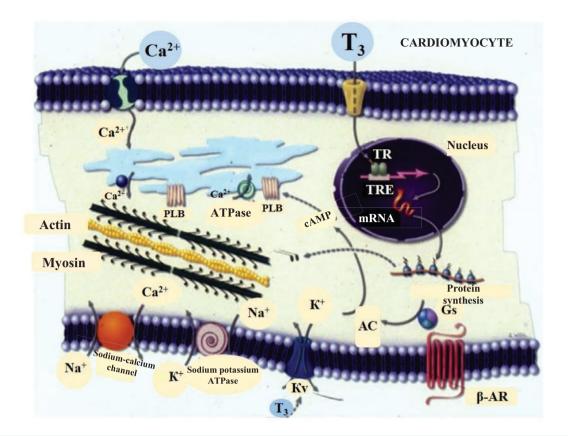
Euthyroid sick syndrome or hypothyroidism?

Some patients with several pathologies, such as coronary heart disease (CHD), liver disease (decompensated cirrhosis), chronic kidney disease (CKD), sepsis, mental illness (including food deprivation), trauma, HIV infection, etc., and with no thyroid pathology, demonstrated low T₃, low or normal T_{M} , and normal TSH. These abnormalities are classified as the so-called euthyroid sick syndrome (ESS, low T₃ syndrome, non-thyroidal illness syndrome, thyroid pseudodysfunction syndrome). The first reports about it emerged around 1976 when methods for determining rT₃ were not widely available. However, some researchers associated this syndrome with high rT₃. In 1982, L. Wartofsky and K.D. Burman analyzed thyroid dysfunction in patients with severe systemic diseases and found a number of factors that can cause changes in thyroid function, such as age, stress, and various drugs [1]. Many somatic diseases are characterized by changes in thyroid hormones, but there are no clinical signs of thyroid dysfunction in such cases. Thyroid hormone levels are restored as the underlying disease is treated. The severity of changes in the thyroid hormone levels depends on the severity of the nonthyroidal disease. These abnormalities are the adaptive response to the pathological mechanisms of the underlying disease. ESS is associated with the impaired deiodination of T_4 in the liver, increased or decreased binding of thyroid hormones to plasma proteins, and impaired TSH production.

The role of D_{III} in the development of ESS was considered relatively recently. D_{III} , which is usually

undetectable in mature tissues, is reactivated in different types of cells in response to damage and is responsible for the decrease of $T_{\rm 3}$ in serum. Hypoxia induces the activity of $D_{\rm III}$ and messenger RNA in vitro and in vivo. The study by Wajner S. M. et al. (2011) discussed the role of cytokines in ESS. Interleukin-6 lowers the activity of $D_{\rm II}$ and increases activity of $D_{\rm III}$ in vitro [1].

Differential diagnosis of ESS with true thyroid pathology is important in clinical practice. Routine determination of thyroid function is not recommended for patients in the early postoperative period, as well as for patients who are in intensive care or trauma unit [1, 2, 13, 14].


Chronic heart failure and low T₃ syndrome

The supposed relationship between cardiovascular diseases and thyropathies was for the first time established more than 200 years ago by C. H. Parry, an English physician, who described a patient with goiter and palpitations.

Many patients with cardiac pathology have thyroid dysfunction (hypothyroidism, thyrotoxicosis), but these conditions are often underestimated and are not taken into account by clinicians.

Many direct and indirect effects of thyroid hormones on the heart and blood vessels are described. There is no conversion of T_4 to T_3 in the heart muscle. Therefore, only T₃ in serum has an effect on the myocardium. The primary transporters of thyroid hormones (mainly T₃) into myocytes are monocarboxylate transporters: MCT8 and MCT10. T_z is an important regulator of the expression of cardiac genes, such as genes that encode contractile proteins, a-myosin heavy chain (MHC) and β-MHC, sodium-calcium exchanger (NCX1), sarcoplasmic reticulum calcium ATPase (SERCA2), β-adrenergic receptor. These mechanisms control changes in the contractile function of the heart, the calcium cycle, and diastolic relaxation of the myocardium. T_z increases contractility and reduces systemic vascular resistance due to the dilation of peripheral resistance arterioles. Thus, T_3 has a direct effect on the heart and vasculature and an indirect effect on cardiovascular hemodynamics. Figure 2 shows the mechanisms of T₃ action at the level of heart muscle cells (cardiomyocytes).

There are several mechanisms of impairment of T_4 conversion to T_5 . One of them is decreased D_1 activity and increased expression and activity of D_{III} . Increased D_{III} gene expression may result from hypoxia and inflammation. There is a theory that the dysfunction of deiodinases may be associated with oxidative stress and selenium (Se) deficiency, which is also observed in cases of heart failure (HF). Glutathione peroxidase (GPX) is a marker of protection against oxidative stress. Se levels correlate with GPX enzyme activity. Deiodinases and GPX are selenium-containing proteins competing for Se uptake. In this case, Se deficiency can lead to both GPX deficiency and decreased T₄ conversion to T₃. According to some literature sources, these patterns can be caused by severe HF. On the other hand, oxidative stress and the so-called low T₃ syndrome can contribute to the progression of HF [15]. Low T₃ syndrome, which accompanies HF, can cause many disorders. Thyroid hormone deficiency may result in decreased expression of the α -myosin heavy chain (a-MHC) gene (MYH6), which leads to the deterioration of heart systolic function. Thyroid hormone deficiency contributes to the lowering of the sarcoplasmic/endoplasmic reticulum of calcium ATPase2 (SERCa2) due to the suppression of the ATP2A2 gene. Thyroid hormones activate phosphatidylinositol-3-kinase (PI3K) and serine/ threonine protein kinase (AKT) signaling pathways through non-genomic action, inducing the production of endothelial nitric oxide. Also, both hormones (especially T_z) have a direct vasodilating effect that depends on their concentration. Low hormone levels can affect the function of ion channels, which leads to arrhythmia. Thyroid hormone deficiency affects the biogenesis of cardiac muscle mitochondria [15]. According to several studies, low T₃ syndrome is a predictor of death in patients with heart diseases. At the same time, low levels of T₃ are associated with HF severity (they are more often observed with underlying III-IV functional class, according to the New York Heart Association (NYHA) classification). Low concentration of free T_z may have the same prognostic value as the N-terminal pro-B-type natriuretic peptide (NT-proBNP) in chronic and acute HF. The coincidence of low T₃ syndrome and Se deficiency in patients with HF is also interesting. In a recent study performed by Fraczek-Jucha M. et al. (2019), it was demonstrated that low

Figure 2. Mechanisms of T3 action on the cardiomyocyte. T3 is involved in both genomic and non-genomic processes in the cell. Genomic mechanisms include the binding of T3 to thyroid hormone receptors in the heart muscle, which regulate the transcription of certain heart genes. Non-genomic processes are associated with continuous modulation of membrane ion channels.

Note: TR — thyroid receptors; TRE — thyroid response element; Gs — guanine nucleotide binding protein; β -AR — beta-adrenergic receptor; Kv — voltage-dependent potassium channels; AC — adenylate cyclase; PLB — hydrophobic phosphoprotein of the sarcoplasmic reticulum of heart muscle (Adapted from Danzi S. et al., 2020 [47])

concentration of free T_3 is often found in patients with severe HF (15.3%). The same study revealed a significant number of cases of Se deficiency (74.6%). However, the correlation between Se concentration and free T_3 level was not proven [16].

The study by Pingitore A. et al. (2016) noted that parenteral intravenous administration of T_3 led to a lower heart rate, increased diastolic volume of the left ventricle and stroke volume, as well as improvement of the neurohormonal profile: decreased noradrenaline level in plasma, NT-proBNP and aldosterone [15, 16].

Synthetic triiodothyronine

Synthetic T_3 (liothyronine, LT_3) is classified as a thyroid hormone preparation and is used in replacement therapy for various forms of hypothyroidism solely as an experimental method of treatment. In contrast to sodium levothyroxine, the

administration of liothyronine leads to short-term drug-induced thyrotoxicosis due to a sharp increase of T₃ in blood. According to several studies [17, 18], combination drugs (sodium levothyroxine + liothyronine) contribute to the improvement of clinical symptoms of hypothyroidism and patients' quality of life. However, this issue is still debatable. Many studies [14, 19–25] demonstrated that combination therapy (sodium levothyroxine + liothyronine) has no advantage over monotherapy with levothyroxine sodium. According to European Thyroid Association, "combination therapy should be considered solely as an experimental treatment modality" [26]. General limitations for LT₃ are its short half-life, risk of cardiovascular complications and mineral and bone metabolism disorders in the presence of hyperthyroidism or drug overdose [27–30].

According to Hoermann R. et al. (2019), there is a prolonged form of LT₃ (with slow release) with better pharmacological characteristics compared

with conventional LT_3 . However, at present, this new formulated product is not available due to the lack of convincing evidence of drug efficacy. Large-scale randomized controlled clinical trials are required for the further recommendation of the use of this drug in clinical practice [31–32].

Conclusion

T₃ is a biologically active thyroid hormone. It is primarily formed by the conversion of T_4 to T_5 in extrathyroid peripheral tissues. Today, there are several known mechanisms of impairment of the conversion of T₄ to T₃, which in most cases are associated with iodine deficiency in the diet, as well as, possibly, with the deficiency of other trace elements, such as selenium, etc. These disorders can also be caused by severe somatic non-thyroidal diseases that require differential diagnosis with true thyroid pathology. Maintaining the physiological concentration of T_3 is extremely important for preventing the development and progression of HF, the formation of antimicrobial and antitumor immunity, and limiting autoimmune inflammation. Combination therapy for hypothyroidism — sodium levothyroxine + liothyronine — is still of great interest. Most of the studies performed revealed no advantages of this therapy compared with monotherapy with levothyroxine sodium. However, according to some studies, combination therapy has significant efficacy in the form of improved neurocognitive function and quality of life in general. Combination therapy may be preferable for certain categories of patients. However, high-quality, large-scale clinical trials are required for the substantiation of these conclusions and the creation of the corresponding evidence base.

Author Contribution:

All the authors contributed significantly to the study and the article, read and approved the final version of the article before publication.

Troshina E.A. (ORCID ID: https://orcid.org/0000-0002-8520-8702): development of the concept and design of the study

Senyushkina E.S. (ORCID ID: https://orcid.org/0000-0001-7960-8315): data collection, analysis and interpretation; substantiation and writing of the manuscript

Список литературы/ References:

- Gomes-Lima C., Burman K.D. Reverse T3 or perverse T3? Still puzzling after 40 years. Cleveland Clinic Journal of Medicine. 2018;85(6):450-5. doi: 10.3949/ ccjm.85a.17079.
- 2. Трошина Е.А. 3об. М.: Медицинское информационное агентство. 2012; 334 с. Troshina E.A. Goiter. Moscow: Meditsinskoe informatsionnoe agenstvo. 2012; 334 р. [In Russian].
- 3. Трошина Е.А., Сенюшкина Е.С., Терехова М.А. Роль селена в патогенезе заболеваний щитовидной железы. Клиническая и экспериментальная тиреоидология. 2018;14(4):192-205. doi: 10.14341/ket10157. Troshina E.A., Senyushkina E.S., Terekhova M.A. The role of selenium in the pathogenesis of thyroid diseases. Clinical and experimental thyroidology. 2018;14(4):192-205. doi: 10.14341 / ket10157. [In Russian].
- 4. Fraczek-Jucha M., Zbierska-Rubinkiewicz K., Kabat M. et al. Low triiodothyronine syndrome and selenium deficiency undervalued players in advanced heart failure? A single center pilot study. BMC Cardiovasc Disord. 2019;19(1):133. doi:10.1186/s12872-019-1118-z.
- Batista G., Hensch T.K. Critical Period Regulation by Thyroid Hormones: Potential Mechanisms and Sex-Specific Aspects. Frontiers in Molecular Neuroscience. April 2019; 12: 77. doi: 10.3389/fnmol.2019.00077.
- Fan P., Luo C.Z., Tang N., et al. Advanced Maternal Age, Mode of Delivery, and Thyroid Hormone Levels in Chinese Newborns. Frontiers in Endocrinology. 2020; 10: 913. doi: 10.3389/fendo.2019.00913.
- 7. Гарднер Д., Шобек Д. Базисная и клиническая эндокринология. Книга 2. М.: БИНОМ. 2018; 696 с. Gardner D., Shoback D. Basic & Clinical Endocrinology. Book 2. Moscow: BINOM. 2018; 696 p. [In Russian].
- 8. Гончаров Н.П., Кация Г.В., Колесникова Г.С. Ключевые гормоны в эндокринологии и методы их определения. М.: Издательство «Адамантъ». 2014; 230 с. Goncharov N.P., Katsiya G.V., Kolesnikova G.S. Key hormones in endocrinology and methods for their determination. M.: Publishing house «Adamant». 2014; 230 p. [In Russian].
- Rastogi L., Godbole M.M., Sinha R.A. et al. Reverse triiodothyronine (rT3) attenuates ischemia-reperfusion injury. Biochemical and Biophysical Research Communications. 2018;506(3):597-603. doi:10.1016/j. bbrc.2018.10.031.
- Salazar P., Cisternas P., Martinez M. et al. Hypothyroidism and Cognitive Disorders during Development and Adulthood: Implications in the Central Nervous System. Molecular Neurobiology. 2019;56(4):2952–63. doi:10.1007/s12035-018-1270-y.
- 11. Sevinc Odabasi Gunes, Ayca Torel Ergur, Fatma Nisanci Kilinc The Effect of Subclinical Hypothyroidism on Body

- Composition Parameters in Children. Int J Clin Pract 2020 May 27;e13554. doi: 10.1111/ijcp.13554.
- 12. Gebreegziabher T., Woltamo T., Thomas D.G. et al. Iodine supplementation of lactating women and assessment of infant visual information processing and maternal and infant thyroid function: A randomized trial. PLoS One. 2019;14(10):e0223348. doi: 10.1371/journal.pone.0223348.
- 13. Armstrong M., Aziz N., Fingeret A. Physiology, Thyroid Function. StatPearls Publishing LLC. 2020; 10 p.
- Clyde P.W., Harari A.E., Getka E.J. et al. Combined levothyroxine plus liothyronine compared with levothyroxine alone in primary hypothyroidism: a randomized controlled trial. Journal of the American Medical Association. 2003;290(22):2952–8. doi: 10.1001/ jama.290.22.2952.
- Fadeyev V.V., Morgunova T.B., Melnichenko G.A. et al. Combined therapy with L-thyroxine and L-triiodothyronine compared to L-thyroxine alone in the treatment of primary hypothyroidism. Hormones. 2010;9(3):245–52. doi: 10.14310/horm.2002.1274.
- Fraczek-Jucha M., Zbierska-Rubinkiewicz K., Kabat M., et al. Low triiodothyronine syndrome and selenium deficiency — undervalued players in advanced heart failure? A single center pilot study.BMC Cardiovasc Disord. 2019;19(1):105. doi:10.1186/s12872-019-1076-5.
- 17. Danzi S., Klein I. Thyroid Abnormalities in Heart Failure. Heart Failure Clinics. 2020;16(1):1–9. doi:10.1016/j. hfc.2019.08.002.
- 18. Noli L., Khorsandi S.E., Pyle A. et al. Effects of Thyroid Hormone on Mitochondria and Metabolism of Human Preimplantation Embryos. Stem Cells. 2020;38(3):369-81. doi: 10.1002/stem.3129.
- 19. Nygaard B., Jensen E.W., Kvetny J. et al. Effect of combination therapy with thyroxine (T4) and 3,5,3'-tri-iodothyronine versus T4 monotherapy in patients with hypothyroidism, a double-blind, randomised cross-over study. European Journal of Endocrinology. 2009;161(6):895–902. doi: 10.1530/EJE-09-0542.
- Bunevicius R., Kazanavicius G., Zalinkevicius R. et al. Effects of thyroxine as compared with thyroxine plus triiodothyronine in patients with hypothyroidism. New England Journal of Medicine. 1999; 340: 424–9. doi: 10.1056/NEJM199902113400603.
- Appelhof B.C., Fliers E., Wekking E.M. et al. Combined therapy with levothyroxine and liothyronine in two ratios, compared with levothyroxine monotherapy in primary hypothyroidism: a double-blind, randomized, controlled clinical trial. Journal of Clinical Endocrinology and Metabolism. 2005;90(5):2666–74. doi: 10.1210/jc.2004-2111.
- 22. Clyde P.W., Harari A.E., Getka E.J. et al. Combined levothyroxine plus liothyronine compared with levothyroxine alone in primary hypothyroidism:

- a randomized controlled trial. Journal of the American Medical Association. 2003;290(22):2952–8. doi: 10.1001/jama.290.22.2952.
- 23. Kaminski J., Miasaki F.Y., Paz-Filho G. et al. Treatment of hypothyroidism with levothyroxine plus liothyronine: a randomized, double-blind, crossover study. Arch Endocrinol Metab. 2016;60(6):562–72. doi: 10.1590/2359-3997000000192.
- 24. Rodriguez T., Lavis V.R., Meininger J.C. et al. Substitution of liothyronine at a 1:5 ratio for a portion of levothyroxine: effect on fatigue, symptoms of depression, and working memory versus treatment with levothyroxine alone. Endocrine Practice. 2005;11(4):223–33. doi: 10.4158/EP.11.4.223.
- Sawka A.M., Gerstein H.C., Marriott M.J. et al.
 Does a combination regimen of thyroxine (T4) and 3,5,3'-triiodothyronine improve depressive symptoms better than T4 alone in patients with hypothyroidism? Results of a double-blind, randomized, controlled trial. Journal of Clinical Endocrinology and Metabolism. 2003;88(10):4551–5. doi: 10.1210/jc.2003-030139.
- Wiersinga W.M., Duntas L., Fadeyev V. et al. 2012 ETA Guidelines: The Use of L-T4 + L-T3 in the Treatment of Hypothyroidism European Thyroid Journal. 2012;1(2):55-71. doi: 10.1159/000339444.
- Siegmund W., Spieker K., Weike A.I. et al. Replacement therapy with levothyroxine plus triiodothyronine (bioavailable molar ratio 14:1) is not superior to thyroxine alone to improve well-being and cognitive performance in hypothyroidism. Clinical Endocrinology. 2004;60(6):750–7. doi: 10.1111/j.1365-2265.2004.02050.x.
- Peterson S.J., Cappola A.R., Castro M.R. et al. An Online Survey of Hypothyroid Patients Demonstrates Prominent Dissatisfaction. Thyroid. 2018;28(6):707-21. doi: 10.1089/thy.2017.0681.
- Jonklaas J., Tefera E., Shara N. Physician Choice of Hypothyroidism Therapy: Influence of Patient Characteristics. Thyroid. 2018;28(11):1416-24. doi: 10.1089/thy.2018.0325.
- Jonklaas J., Tefera E., Shara N. Prescribing Therapy for Hypothyroidism: Influence of Physician Characteristics. Thyroid. 2019;29(1):44-52. doi: 10.3389/ fendo.2019.00031
- Goldman J.M., Line B.R., Aamodt R.L., et al. Influence of triiodothyronine withdrawal time on 131I uptake postthyroidectomy for thyroid cancer. Journal of Clinical Endocrinology and Metabolism.1980;50(4):734-9.
- 32. Hoermann R., Midgley JEM., Larisch R. et al., Individualised requirements for optimum treatment of hypothyroidism: complex needs, limited options. Drugs in Context. 2019 Aug; 13; 8: 212597. doi: 10.7573/dic.212597.