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ATepocr(nepoa ABaAeTcA Bep,yu.ueﬁ I'IPVI‘-WIHOD’I CepAeHHO-COCyAVICTbIX 3a60/1eBaHm7| cpep,M B3POCIIOFO Hace/sieHunA. XaPaKTePHO 3Ha4yuTesibHOe yBeIWI-
YeHWe pacrnpoCcTpaHeHHOCTU aTepPOCK/IepO3a C BO3PaCTOM, YTO CBUAETE/IbCTBYET O BO3MOXHOM B/UAHUM Ha pa3BuTMe 60/1€3HM MexaHV3MOoB CTape-
HWSA, B TOM YMC/Ie U3MEHEHWUI MUTreHeTUYeCKUX GpaKTOPOB, O6YC/NOB/IEHHbIX PEryNATOPHLIM BAUAHMEM TPaHCNO30HOB. TpUrrepaMmn aTepockaeposa
ABNAKOTCA TaKXXe BIApyCHbIe MH¢eKLlIAM, KOTOpre CI'IOCOGCTByIOT aKTuBauumn peTpOBneMeHTOB n CTMMyﬂFILI,I/IM IAHTepq)epOHOBOFO oTBeTa I'IpOAyKTaMI/I
nx SKCI'IpeCCI/IM C pa3BMTI/IeM XpOHIA‘-IECKOFO BOCna/zieHusa, C HaprJeHI/IeM perynﬂu,mm reHoB IAMMyHHOVI CUCTEMBI, MMKPOPHK N A/IMHHBIX HEeKoAWN-
pyiOLLlVIX PHK. nepCI‘IeKTVIBHbIM Hal'lpaBneHVIeM ne4vyeHuna aTepOCKneposa ABNAETCA 3NUreHeTn4ecKkoe BO3Ael7ICTBI/Ie Ha 3KCI'IPECCMFO cneu,mbwqecmx
reHoB, BOB/Ie4eHHbIX B MaToreHes aTepocmepoaa CMOMOLL b Ma/ibiX VIHTqu)ePVIPyK)LIJ,VIX PHK.B AAHHOM OTHOLWIEHUN I'IpOLIJIWI K/IMHN4YeCKune ncnbita-
HWA NpenapaTbl UHKAMCMPaH 1 0/MacupaH, NMoKasaslune CBO 3G HeKTUBHOCTb. [03TOMY aKTya/ieH MOUCK HOBbIX MOJIEKY/IAAPHBIX MULLEHEe B JaHHOM
HanpaB/IeHUK, B Ka4eCTBE KOTOPbIX MOTYT CNYXMWTb TPAHCMO30HbI, ABAAILMECA NCTOYHUKAMMU Hekoaupyowmx PHK. Mi3sMeHeHne akTMBHOCTM peTpo-
3/1EMEHTOB MpY CTapeHUM OKasbliBaeT r/106a/ibHOe peryiaTopHOe BAMAHWE Ha GYHKLMOHMPOBaHME BCEro reHoMa, CnocobCTBys pasBUTUIO BO3pacT-
aCcoLMMPOBaHHONM NaToNOrMK. AHann3 Hay4HOW AWTepaTypbl MO3BOAWA UAEHTUMLMPOBaTL 29 nMpousoleawnx oT peTposieMeHToB MUKPOPHK,
n3MeHeHunAqa 3KCI‘IPECCI/IVI KOTOPbIX onpep,eneHbl KaK I'IpM CTapeHVII/I, TakK un I'IPVI aTepocmepo3e, 4yTo nOATBePMAaeT npep,nono»(eHMe o POIWI aKTUBU-
POBaHHbIX I'IPVI CTapeHVIVI PeTpOBneMeHTOB B PaBBVITVIVI aTepocmepoaa. BbifiBNIE€HHbIE MVIKPOPHK npeAnonaraeTcn ncnosab3oBatb 414 TapreTHoro
BOBAeﬁCTBMﬂ C uesibro I'IPOAHEHVIH XU3HUN N nevyeHunsa aTePOCKneP03a.
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Abstract

Atherosclerosis is the leading cause of cardiovascular disease among adults. The incidence of atherosclerosis increases significantly with age,
which indicates the possible influence of aging mechanisms on the development of the disease, including changes in epigenetic factors caused by
pathological activation of transposable elements. Triggers of atherosclerosis are also viral infections, which promote the expression of retroelements
that stimulate the interferon response with the development of chronic inflammation. Activated retroelements also alter the regulation of immune
system genes and epigenetic factors, including the pathological production of microRNAs and long non-coding RNAs. A promising direction for
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atherosclerosis treatment is the epigenetic impact on the expression of specific genes involved in the pathogenesis of atherosclerosis using small
interfering RNAs. In this regard, the drugs inclisiran and olpasiran have undergone clinical trials and have shown their effectiveness. Therefore, it is
important to search for new molecular targets in this direction, which can serve as transposons, which are sources of non-coding RNAs. Changes in
the activity of retroelements during aging have a global regulatory effect on the functioning of the entire genome, contributing to the development
of age-associated pathology. An analysis of the scientific literature made it possible to identify 29 microRNAs derived from retroelements, changes
in the expression of which have been identified both during aging and atherosclerosis. These microRNAs can be used as tools for prolonging life and
treating cardiovascular pathology. The results obtained also indicate that retroelements pathologically activated during aging cause the development
of atherosclerosis.
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Introduction

Atherosclerosis (AS) is the leading cause of cardio-
vascular diseases globally. AS is characterised by a long-
lasting latent period and frequently involves more than
one vascular bed. The key clinical manifestations of the
disease are AS with involvement of coronary, carotid
arteries, peripheral lower extremity arteries (AS PLEA),
etc., ischemic heart disease and cerebral ischemia. Fat
deposits on arterial walls gradually develop into seba-
ceous cysts and distinctive plaques, the quick rupture of
which causes local thrombosis and partial or complete
occlusion of the involved artery [1]. The global incidence
of AS PLEA (from the iliac segment to feet) has risen
by 45 % over the period from 2000 to 2015 and reached
5.6 % of the adult population globally (7.4 % — in high-
income nations and 5.1 % — in low- and medium-
income nations) [2]. IHD-caused mortality in Eastern
Europe, including Russia, was 434 per 100,000 for men
and 235 per 100,000 for women; while the rate of deaths
from ischemic stroke was 138 per 100,000 of population
in Russia. In addition to environmental factors, such
as smoking, unhealthy diet with dyslipidemia and obe-
sity [1], ageing and genetics have an important role to
play in aetiopathogenesis of AS [3]. AS development is
facilitated by kidney diseases due to faster calcification
both of vessel intima (resulting in calcium deposition in
atheromatous plaque) and of the middle layer (with an
increase in the vessel rigidity) [1]. Major contributors
(as compared to IHD) to the development of AS PLEA
are smoking and type 2 diabetes mellitus. However, two
thirds of patients with AS PLEA also have IHD and cere-
bral ischemia, evidencing the systemic nature of vessel
involvement. A simple and reliable test to diagnose AS
PLEA is the ankle-brachial index, which is calculated by
dividing ankle systolic arterial pressure by shoulder sys-
tolic pressure [3].

According to results of meta-analyses, peripheral ath-
erosclerosis is associated with allelic variants of SYTL3
(rs2171209), TCF7L2 (rs290481), CYP2B6 [3]. Isch-
emic heart disease is associated with polymorphisms
of 57 various genes [4]. Cerebral ischemia is associated
with allelic variants of VCAM1, LAMC2, GP1BA, PROC,
KLKBI, F11, which are planned to be used in the man-
agement of the disease [5]. However, it is impossible to
explain the role of these numerous genes in the devel-
opment of AS and to use them as targets for the target
therapy. A study of epigenetic mechanisms of AS, which
are reversible and can be efficiently corrected with the
help of non-coding RNA (ncRNA), would be more
promising. The epigenetic factors include DNA methyla-
tion, histone modification and RNA interference using
ncRNA. During the ontogeny, the epigenetic factors are
regulated by transposons, which include retroelements
(RE) and DNA transposons [6]. A comparative study
conducted in 2022 to study the epigenetic factors in
samples obtained from patients with AS and healthy con-
trols showed 47 activated (hypomethylated) and 90 inac-
tive (hypermethylated) genes in AS, as well as 10 key AS
genes (TCF7L2, CACNAIC, NRP1, GABBR2, FANCC,
DCK, CCDC88C, TCF12, ABLIM1, PBX1), differentially
expressed under the influence of microRNA and abnor-
mal methylation [7]. AS development is facilitated by
age-associated vascular wall inflammation [8], whereas
ageing is associated with abnormal activation of HERV
(human endogenous retroviruses) RE [9] and LINE-1
(long interspersed nuclear elements-1) [10], the prod-
ucts of transcription and translation of which stimulate
interferon hyperproduction, causing chronic inflamma-
tory processes in the body [9, 11]. The role of transpo-
sons in the initiation and development of AS is a result
not only of interferon-mediated inflammation, but also
of the participation in the immune system functioning.
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An evidence of this can be formation of RAGI and
RAG2 recombination from transposons necessary for
V(D)J [12], use of ERV as HLA-G gene enhancers [13]
and interferon-inducible genes (thus forming transcrip-
tional networks for interferon response [14]). Meta-
analyses demonstrated the role of RE dysregulation in
an autoimmune pathology [15], which is associated with
the development of AS [16].

AS presents with persistent inflammation as a result
of polarisation of AS-associated macrophages from anti-
inflammatory (M2-like) to pro-inflammatory (M1-like)
macrophages under the influence of epigenetic drug resis-
tance factors. Since macrophages are important for the
organisation of the entire process of AS development —
from initiation to plaque rupture — they are called AS-
associated macrophages. Since AS presents with persis-
tent inflammation, modern therapies, including statins,
ACE inhibitors, beta blockers and aspirin, have no effect
on disease progression, because they do not specifically
affect macrophages and their polarisation [17]. HERV-
K102 are expressed by activated monocytes and move
to vacuoles connected to their surfaces, making the cells
look foamy. HERV-K102 are released only during mac-
rophage lysis. HERV-K102 protect human cells against
viral infections and malignancies [18]. Since clinical
trials demonstrate that HIV, HSV-1 and HSV-2, hepatitis
C (HCV) and B, cytomegalovirus (CMV), T-cell leukae-
mia and papilloma (HPV), flu (similar to those described

in the systemic review [19]) contribute to the develop-
ment of AS, HERV-K102 hyperproduction to protect the
cells [18] can cause impaired gene expression in macro-
phages, leading to a pathology and involvement in AS
pathogenesis [20]. REs are activated by stress factors
[21].

Transposons regulate gene expression during human
ontogeny [22], acting as drivers of epigenetic regula-
tion [6], because they are sources of ncRNA, such as
microRNA [23] and long ncRNA [24, 25]. Therefore,
changes in expression of specific mcRNA in AS can
represent RE dysregulation in these processes (Fig. 1).
At the same time, ncRNA is not only involved in post-
transcription regulation of gene expression, but also is
a key driver of DNA and histone modification [6] due
to the mechanism of RNA-directed DNA-methylation
(RADM). This phenomenon, which was first observed
in plants, has been found in humans as well [26]. Over
the last decades, new methods to impact the inflamma-
tion in AS have been developed, such as blocking the
recruitment of inflammatory cells (using antagonists
of chemokine receptors and adhesion molecules), neu-
tralisation of pro-inflammatory factors (monoclonal
antibodies to chemokines and cytokines), plaques sta-
bilisation (matrix metalloproteinase inhibitors). How-
ever, almost all of them failed to demonstrate efficacy
during preclinical and early clinical trials. For example,
canakinumab, a monoclonal antibody to IL-1p, reduces
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Figure 1. Scheme of retroelements involvement in atherosclerosis development.
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C-reactive protein levels and the incidence of recur-
rent cardiovascular events without any impact on LDL
cholesterol levels. Therefore, one promising area can be
targeted change of macrophage polarisation as a result
of targeting the epigenetic factors with microRNA [17].
The most optimal scheme is the use of microRNA, both
for changing the macrophage polarisation and targeting
abnormally active transposons.

Role of MicroRNA Derived
from Retroelements

in the Development of
Atherosclerosis

RE involvement in aetiopathogenesis of atheroscle-
rosis is related not only to the impact on gene expres-
sion, but also to immune system activation, however
with mediation of direct formation of long ncRNA from
LINE [27] and HERV transcripts [28], which have an
important role to play in the development of AS [29].
Besides, microRNAs derived from retroelements [23]
and involved in AS pathogenesis interact with their
evolutionary sources (RE) in the genome structure and
with molecules of their transcripts, leading to formation
of abnormal gene networks, identification and descrip-
tion of which can become the basis of the efficient target
therapy in AS. A potential therapeutic target can be miR-
1246 originating from LTR-ERVL and partially comple-
mentary to its sequence [23]. This microRNA facilitates
proliferation, invasion and differentiation of vascular
smooth muscle cells (VSMC) [30]. Abnormal prolifera-
tion of VSMC causes AS plaques. VSMC can move to less
differentiated forms, where VSMC markers are present,
including macrophage-like cells, which facilitates pro-
gression of AS and inflammation [31].

Ageing-associated [32] miR-1248, which evolved
from SINE/Alu [23], inhibits thrombomodulin expres-
sion by endothelial progenitor cells, thus evidencing
its possible involvement in AS pathogenesis [33]. MiR-
1257, which evolved from ERVL [23], is involved in pro-
tein assembly pathways in the major histocompatibility
system (MHC) and regulates various target genes, mostly
CALR, as well as POMC, TLR4, IL10, ATF6, facilitating
AS progression [34]. Exosomes obtained from M2 mac-
rophages of patients with myocardial infarction demon-
strated high levels of miR-1271 [35], which evolved from
LINE2 [23]. An examination of coronary artery samples
of patients with AS showed a significant increase in
expression of miR-1273 [36], the family of which evolved
from LINE, SINE, ERVL [23].

Patients with ischemic stroke had higher levels of
miR-1290 (which evolved from SINE/MIR [23]) in
peripheral blood samples vs. healthy controls [37]. MiR-
147, which evolved from LINE1 [23], has atherogenic
effects and induces ICAM-1 (intracellular adhesion
molecule 1) expression by endothelial cells (EC) [38].
During the evolution, LINE2 was a source of miR-151

[23], which inhibits EC apoptosis and plays a vital role
in AS development. miR-151 targets IL-17A, BAX pro-
tein, c-caspases 3 and 9 [39]. Expression of miR-192
(which evolved from LINE2 [23]) is significantly higher
in serum of patients with AS. This microRNA facili-
tates proliferation and migration of VSMC [40]. Serum
of patients with AS demonstrates significantly reduced
levels of miR-211 [41], which evolved from LINE2 [23].

Plasma samples obtained from patients with unsta-
ble angina demonstrate significantly higher levels of
miR-28, which facilitates expression of ABCA1 (ATP-
binding cassette subfamily, a regulator of homeostasis
of cholesterol and phospholipids), which correlated
with activation of LXRa translation in macrophages
[42]. MiR-28 evolved from LINE2 [23] and is known
for specific expression in patients with unstable angina.
In this regard, miR-28 is a morphological substrate,
since it is involved in pathophysiological causes of
myocardial infarction. MiR-28 is located in intron 6 of
LPP (lipoma preferable partner) and regulates migra-
tion, adhesion, proliferation, apoptosis of cells, includ-
ing VSMC, in atherosclerosis [42]. High expression of
miR-31 (which evolved from LINE2 [23]) facilitate AS
progression as a result of effect on NOX4 (NADP oxi-
dase-4, a non-phagocytal cell ferment which catalyses
reconstruction of molecular oxygen to various active
forms) [42]. Patients with chronic IHD have specifi-
cally higher expression of miR-320b, which regulates
cholesterol outflow from macrophages. Administration
of miR-320b to experimental animals caused atheroscle-
rosis plaques to grow; the number of damaged macro-
phages increased; and pro-inflammatory cytokine levels
increased due to higher phosphorylation of NF-kB [43].
During the evolution, the source of miR-320b is LINE2
[23]. Targeting miR-320b during AS therapy [43] can
be a promising area, since it is the basis for resolving
the issue with regulation of macrophage polarisation in
a majority of current studies [17].

MiR-325, which evolved from LINE2, facilitates AS
development due to inhibition of expression of KDM1A
(which encodes lysine demethylase 1A, a component of
HDAC), reducing SREBF1 (a transcription factor bind-
ing to promoter gene of low-density lipoprotein recep-
tor) levels and inhibiting activation of PPARy-LXR-
ABCAL1 pathway [44]. Plasma levels of miR-335, which
evolved from SINE/MIR [23], were high in patients with
AS [45]. Peripheral mononuclear cells demonstrated high
levels of miR-342 [46], which evolved from SINE/tRNA-
RTE [23] and positively correlated with serum concen-
trations of IL-6 and TNF-a [46]. Serum levels of miR-
374 (which evolved from LINE2 [23] and stimulates
proliferation and migration of VSMC) in patients with
AS were high [47]. Reduced outflow of free cholesterol
from macrophages and increased inflow of oxidised low-
density lipoproteins is an important factor of AS devel-
opment. MiR-378, which evolved from SINE/MIR and
LINE2 [23], is involved in metabolic pathways regulating
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these processes [48]. MiR-384 [49], which evolved from
LINE-Dong-R4, also contributes to the development of
AS due to effects on macrophages (interfering with their
autophagy) [23].

Low expression of miR-421 (which originates from
LINE2 [23]) in serum, plaques and VSMC in patients
with THD results in higher levels of CXCL2 (a secre-
tory protein, which is involved in immunoregulatory
and inflammatory processes) [50]. MiR-4487 (which
evolved from LINE1 [23]) stimulates VSMC migration
and survival and inhibits their apoptosis by targeting
RASA1 (RAS suppressor, which controls cell prolifera-
tion and differentiation) [51]. Expression of miR-493 in
large vessels of patients with AS is reduced as com-
pared to controls [52]. This microRNA evolved from
LINE2 [52]. MiR-495 (originating from ERVL [52])
is involved in AS pathogenesis by binding to circular
RNA hsa_circ_0126672 [53]. MiR-520d (originating
from SINE/Alu [23]) inhibits expression of PCSK9 (pro-
protein convertase subtilisin/kexin, type 9, mutations
in which cause familial hypercholesterolemia), which
causes degradation of low-density lipoprotein recep-
tors [54]. Fat tissue around coronary arteries of patients
with THD has reduced miR-548 expression. MicroRNAs
in this family evolved from various REs (LINEI, LINE2,
LTR-ERVL, LTR-Gypsy, LTR-ERV1, SINE/MIR) and
DNA-TE (TcMar, hAT Charlie) [23]. MiR-548 regu-
lates expression of HMGBI1 (nonhistone protein binding
chromatin and involved in control of DNA transcription,

replication and reparation) [55]. Expression of miR-552
(which evolved from LINE1 [23]) in cerebral vessels of
patients with AS increases under the influence of PDGF-
BB (platelet-derived growth factor-BB) in VSMC, thus
stimulating their proliferation, invasion and migration
[56].

Circular RNA circ_0086296 induces AS via feed-
back pathway of IFIT1/STATI1, acting as a sponge for
miR-576 (which evolved from LINEI [23]). The latter
inhibits expression of IFITI (interferon induced protein
with tetratricopeptide repeats) and prevent AS develop-
ment [57]. Circular RNA has_circ_0008896 stimulates
VSMC proliferation and migration by interacting with
miR-633 (which evolved from SINE/MIR [23] and reg-
ulates CDC20B (cell division cycle 20B)) [58]. Expres-
sion of miR-641 (which evolved from SINE/MIR [23]) is
reduced in VSMC, induced by oxidised low-density lipo-
proteins. This microDNA interacts with a long ncRNA
MIAT, which regulates proliferation, migration and inva-
sion of VSMC [59]. MiR-708, which evolved from LINE2
[23], is expressed in large numbers in epithelial cells of
neointima in damaged vessels where the blood flow is
normal. This micro RNA has anti-inflammatory effects;
it inhibits expression of kinase linked to IL-1 recep-
tor, IL-6 receptor, conserved helix-loop-helix ubiqui-
tous kinase, inhibitor of subunit-y of nuclear factor kB
kinase [60]. Therefore, we have described 29 microRNAs
which originate from RE and are involved in AS develop-
ment in various ways (see Fig. 2).
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Figure 2. Scheme of influence of microRNAs derived from retroelements in atherosclerosis development.




90

LECTURES

The Russian Archives of Internal Medicine ® Ne 2 e 2024

Association with Ageing of
MicroRNAs Originating from
Retroelements, Which Are
Involved in Atherosclerosis
Pathogenesis

Since, during the development, REs are a source of
the mentioned microRNAs, which are associated with
AS, it can be assumed that one of the causes of changes in
expression of these microRNAs is abnormal RE activa-
tion due to body ageing [9, 10] and resulting in chronic
inflammatory processes [9, 11]. This is due to the pres-
ence of complementary RE sequences and derivative
microRNAs and involvement in common epigenetic
regulatory networks. In order to prove this hypoth-
esis, scientific literature was analysed and the associa-
tion between changes in the 29 microRNAs and ageing
was identified. An analysis of common transcriptomic
changes in microRNA with human fibroblast ageing
vs. early passage cells, conducted in 2009 (Maes et al.,
2009), demonstrated an association with ageing of miR-
147 and miR-633 [61]. In 2010, similar works (Marasa
et al., 2010) identified an increased expression of miR-
1246, miR-1257, miR-1271, miR-1273, miR-548, miR-
576, miR-641 [62]. In 2011, similar studies (Dhahbi et
al., 2011) managed to identify changes in expression of
miR-1246, miR-1290, miR-548 [63]. Serum of elderly
patients (over 64 years of age) had lower miR-1248 and
miR-151 concentrations as compared to a younger popu-
lation [32].

A comparative analysis of extracellular vesicles
showed significantly higher expression of miR-192 in
old experimental animals (mice) vs. young animals. This
microRNA turned out to be associated with immune pro-
cesses and regulation of cytokine signalling [64]. Changes
in microRNA levels in serum samples corresponded
to reduced miR-211 and increased miR-374 levels in a
group of people with short life expectancy vs. long-liv-
ers. MiR-211 targets mRNA of CREB5 (encodes cAMP
response element 5-binding protein), DDIT4 (encodes
DNA-damage-induced transcript 4), IGF2R (encodes
insulin-like growth factor 2 receptor). MiR-374 targets
mRNA of ATM (encodes serine threonine kinase ATM),
BCL2 (encodes BCL2 apoptosis regulator), CDKNIA
(encodes cycline-dependent kinase 1A inhibitor), CISH
(encodes cytokine-induced SH2-containing protein),
EP300 (encodes El1A-binding protein p300), HMGB2
(encodes high mobility group box 2), PARPI (encodes
poly(ADP-ribose) polymerase), TP73 (encodes tumour
protein p73) [65]. As far as circulating microRNAs are
concerned, miR-28 [66] levels are reduced in physiologic
ageing. The role of increased miR-31 expression in skin
ageing has been identified, which has direct effect on
mRNA of the circadian rhythm gene Clock, activating
MAPK/ERK cascade and depleting stem cells of skin hair
follicles [67]. Higher expression of miR-320b in ageing
is associated with higher TNF-a levels [68]. Reduced

production of miR-325 contributes to chondrocyte
ageing due to activation of p53/p21 pathway [69]. MiR-
335 induces EC ageing and inhibits mRNA of sKlotho (a
protein gene product, acts as a humoral factor reducing
peroxide-caused apoptosis and cellular ageing in EC)
[70].

Peripheral blood mononuclears demonstrate reduced
expression of miR-342 with ageing. This microRNA inter-
acts with the coding sequence of mRNA of SIRT6, which
facilitates ageing [71]. Computer-generated simulation
aimed at decoding the impact of microRNA on skeletal
muscles ageing demonstrated that miR-378 maintains
stable myogenesis due to inhibition of Msc expression
during late stages of differentiation. MiR-378 is located
in the intron of PGC-1f, which regulates energy metabo-
lism. MiR-378 also targets mRNA of IGF-1 [72]. With
ageing, expression of miR-384 is significantly higher in
mesenchymal stem cells of the brain, which causes inhi-
bition of osteogenetic differentiation, thus contributing
to ageing. MiR-384 inhibits mRNA of Gli2 (encodes
the protein of zinc finger family GLI2) [73]. In ageing,
expression of miR-421 in the anterior lens capsule is
significantly reduced, which facilitates cataract develop-
ment. MiR-421 is an apoptosis inhibitor and induces cell
proliferation [74]. A study of skin samples taken from
people of various ages demonstrated that increased
expression of miR-4487, which interacts with circular
RNAs, has a role to play in skin ageing [75]. The role of
reduced miR-493 expression in myocardium ageing has
been established [76].

Higher miR-495 expression contributes to cell apop-
tosis and ageing of mesenchymal stem cells by impacting
BM!1 (encodes proto-oncogene BMI1) [77]. It has been
established that miR-520d reduces expression of the long
ncRNA GPRC5D-AS1, which inhibits cell apoptosis and
activates factors of muscle regulation Mef2c, Myf5, MyoD,
Myo G. MiR-520d facilitates skeletal muscles ageing [78].
One sign of skin ageing is impaired calcium gradient.
Higher calcium concentrations in the basal layer inhibit
cell proliferation, while reduced concentrations in the
granular layer change the keratinised layer composition.
Keratinocytes respond to calcium-induced blocking of
mitosis with higher expression of specific microRNAs,
including miR-552 [79]. With ageing, expression of miR-
708 in joint tissue and serum drops [80]. Table 1 presents
data on the changes in expression of the 29 microRNAs
originating from RE, in ageing and atherosclerosis. The
results allow assuming that, with ageing, RE activation
leads to immunopathological processes and disorders
in epigenetic networks for gene regulation, resulting
in modified expression of specific microRNAs (which
evolved from REs and have complimentary sequences),
which contribute to AS development.

According to a systematic review of scientific litera-
ture conducted in 2023, both experimental and clinical
trials are ongoing which seek to explore the direct impact
on epigenetic factors of atherosclerosis. The role of
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Table 1. Association of retroelement-derived miRNAs with atherosclerosis and aging

Changes in miRNAs expression | Changes in miRNAs expression

Ne MiRNA Retroelement-source in atherosclerosis (increase — T, |  during aging (increase — T,
decrease — |) [author] decrease — |) [author]
1. miR-1246 ERVL 1 [30] 1 [62, 63]
2. miR-1248 SINE/Alu 1 [33] 1[32]
3. miR-1257 ERVL T[34] 1 [62]
4. miR-1271 LINE2 T[35] T [62]
5. miR-1273 LINE, SINE, ERVL T [36] T [62]
6. miR-1290 SINE/MIR T [37] T[63]
7. miR-147 LINE1 1138 L [61]
8. miR-151 LINE2 1 [39] 1[32]
9. miR-192 LINE2 1 [40] 1 [64]
10. miR-211 LINE2 1[41] 1 [65]
11. miR-28 LINE2 1 [42] L [66]
12. miR-320b LINE2 T [43] T [68]
13. miR-325 LINE2 T [44] 1 [69]
14. miR-335 SINE/MIR 1 [45] 1 [70]
15. miR-342 SINE/tRNA-RTE 1 [46] L[71]
16. miR-374 LINE2 1 [47] 1 [65]
17. miR-378 SINE/MIR, LINE2 T [48] 1 [72]
18. miR-384 LINE-Dong-R4 1 [49] 1 (73]
19. miR-421 LINE2 1 [50] 1 [74]
20. miR-4487 LINE1 1 [51] 1 [75]
21. miR-493 LINE2 1 [52] 1 [76]
22. miR-495 ERVL 1 [53] T(77]
23. miR-520d SINE/Alu 1 [54] T (78]
24. miR-548 LINE, ERV, SINE 1 [55] 1 [62,63]
25. miR-552 LINE1 1 [56] 1 [79]
26. miR-576 LINE1 1 [57] 1 [62]
27. miR-633 SINE/MIR 1 [58] T [61]
28. miR-641 SINE/MIR 1 [59] T [62]
29. miR-708 LINE2 1 [60] 1[80]

medicinal products in the mechanisms of the disease is
being studied as well. For example, clinical trials demon-
strated that aspirin absorption results in reduced meth-
ylation of ABCBI (encodes a member of ATP-binding
cassette subfamily) in patients with stenotic intracraneal
arteries. The role of plant mixes used in China, as well as
of curcumin, resveratrol and geniposide on DNA meth-
ylation in AS was established. The efficacy of DNA meth-
yltransferases (DNA-MT) inhibitors [81] (which are
actively used in the treatment of malignancies [82]) for
the treatment of AS was demonstrated. In mice experi-
ments, an analogue of cytosine (5-azacytidine) inhibited
AS development. Antisense oligonucleotides, e.g. MG98,
can be successfully used as DNA-MT inhibitors for

the treatment of AS. Epigenetic therapy can target his-
tone modification enzymes; histone methyltransferase
inhibitors (iHMT) and histone acetyltransferase inhibi-
tors (iHAT) can be used. Currently, iHMTs are an unem-
ployed resource, the most potent of them being GSK126, a
highly-selective component to methyltransferase EZH2,
which can inhibit expression of pro-inflammatory genes.
Anacardic acid and garcinol are natural iHATs. MG149,
a synthetic analogue of anacardic acid, inhibits NF-xB
pathway, which contributes to AS development. A prom-
ising class of products is histone deacetylase inhibitors
(iHDA), because they have already been approved by the
FDA for the treatment of haematologic cancers and can
re-activate silent genes by targeted impact on target gene
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promoters. In mice experiments, the most promising
iHDA was Vorinostat (approved for T-cell lymphoma)
[81]. In addition to the described impact of plant mixes
and known medicinal products on epigenetic changes in
AS, an experiment on 36 male C57BL/6] mice with zero
ApoE aged 10 weeks demonstrated an effect from exer-
cises on microRNA expression: reduced miR-155 levels
and increased miR-126, miR-146a levels. Mice were
placed in a chamber with a run track 10 minutes before
the running started. The pace was 13 m/min for 60 min-
utes daily from 06.00 pm to 07.00 pm, with a zero per-
cent slope. These mice demonstrated higher expression
of miR-126 and miR-146a, which facilitated reduction
in inflammatory vascular damage by inhibition of TRAF
and TLR4 signalling, vs. controls (statins and no treat-
ment) [83].

The problem of epigenetic therapy is its low bio-
availability and side effects, because target molecules
are expressed in tissues all over the body. Therefore,
nanomaterials are used to ensure targeted exposure of
atherosclerotic foci in vessels. For this purpose, specific
liposomes, micelles and nanoparticles of high-density
lipoproteins are used [81]. The use of biologically
mineralised, framed nanoparticles with a neutro-
phil membrane coating, containing anti-miR-155, has
been described, which ensured inhibition of miR-
155 expression in the endothelial wall of vessels, thus
preserving translation of BCL6 [84]. Currently, new
drugs from the group of a modified double-stranded
short interfering RNA have been registered and are
used, e.g. Inclisiran, which inhibits translation of pro-
protein convertase subtilisin/kexin, type 9 (PCSK9), in
liver and ensures stable reduction in LDL cholesterol.
Phase 3 randomised, placebo-controlled clinical trials
in 3,660 subjects demonstrated that, when Inclisiran
is prescribed twice a year with or without the maxi-
mum tolerated statin dose, this drug is efficient, safe
and well-tolerated in lowering LDL cholesterol levels in
adult patients with heterozygous familial hypercholes-
terolemia and AS [85]. Another short interfering RNA,
Olpasiran, inhibits expression of LPA at the mRNA
level. Since plasma concentrations of apolipoprotein (a
component of LDL), encoded by LPA, positively corre-
late with the risk of AS, Olpasiran is used in the therapy
of AS. Olpasiran enters the liver via N-acetylgalactos-
amine fragment, which binds to apolipoprotein recep-
tor on the liver surface. In hepatic cells, this short inter-
fering RNA binds to mRNA of LPA with the help of an
RNA-induced silencing complex (RISC) due to nucleo-
tide sequence complementariness. A multicenter ran-
domised, placebo-controlled trial OCEAN(a)-DOSE in
patients with atherosclerosis and high apolipoprotein
levels after Olpasiran therapy for 48 weeks (SC injec-
tions of the drug once every 12 weeks) demonstrated
efficacy and safety vs. placebo [86]. The search for
new drugs, where the main component is non-coding
RNA, is ongoing. New potential RNA-targeting agents

for reliable reduction of apolipoprotein levels are drugs
encoded like SLN360 and LY3819469 (Lepodisiran),
which are also short interfering RNAs targeting post-
transcriptional inhibition of mRNA of LPA [87]. The
microDNAs, described in this article and originating
from RE, can also be the basis for inhibition of trans-
posons, activated in atherosclerosis, which is one of the
methods to overcome side effects caused by non-spe-
cific exposure to epigenetic therapy in AS.

Conclusion

Analysis of scientific literature allowed to conclude
that the key role in AS initiation and development is
played by ageing-mediated excessive activation of REs,
which causes interferon stimulation and immunopath-
ological processes. Viral infections and stress are also of
importance; they activate RE to protect cells, which can
be a cause of early onset and progression of AS. Since
statins and aspirin used in the therapy of AS do not
affect specifically macrophages and their polarisation
and do not impact disease progression, new ways to
affect AS should be searched for. There were attempts
to use monoclonal antibodies to chemokines and cyto-
kines, antagonists of chemokine receptors and adhesion
molecules, matrix metalloproteinase inhibitors in the
therapy of AS. However, these methods did not demon-
strate any significant effect. The most promising area is
epigenetic exposure of the genes involved in AS patho-
genesis, PCSK9 (Inclisiran) and LPA (Olpasiran), to
short interfering RNAs, which demonstrated significant
effect in clinical trials. Therefore, targets for epigenetic
exposure in AS should be searched for; these can be
REs. Their ageing-mediated excessive activation results
in interferon stimulation and immunopathological
processes. Since REs are a source of long ncRNAs and
microRNAs, their impaired expression in AS reflects
RE dysregulation. Thus, a promising therapy for this
disease can be target therapy with specific microRNAs,
directed against pathologically activated REs involved
in AS pathogenesis. The 29 RE-originating microR-
NAs described in this study, which are associated both
with ageing and AS, can be used as tools for epigenetic
target therapy. These microRNAs are involved not only
in immune reactions, but they also impact expression
of various genes in VSMC, EC and macrophages, thus
demonstrating complex mechanisms of AS develop-
ment with involvement of various signalling pathways
in specific cell types.
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