

DOI: 10.20514/2226-6704-2024-14-2-96-107 УДК 616.361-002-004-021.3-036-079.4-085 EDN: FGADIS

А.К. Гусева*, А.В. Охлобыстин

ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» (Сеченовский Университет) Министерства здравоохранения Российской Федерации, кафедра пропедевтики внутренних болезней, гастроэнтерологии и гепатологии института клинической медицины им. Н.В. Склифосовского Москва, Россия

ОСОБЕННОСТИ КЛИНИЧЕСКОГО ТЕЧЕНИЯ, Δ ИФФЕРЕНЦИАЛЬНОЙ Δ ИАГНОСТИКИ И ЛЕЧЕНИЯ IgG_{4} -СКЛЕРОЗИРУЮЩЕГО ХОЛАНГИТА

A.K. Guseva*, A.V. Okhlobystin

I.M. Sechenov First Moscow University (Sechenov University), Department of Internal Medicine, Gastroenterology and Hepatology, Moscow, Russia

Clinical Features, Differential Diagnosis and Treatment of IgG₄-Related Sclerosing Cholangitis

Резюме

Цель обзора: представить современный взгляд на особенности клинического течения, дифференциальной диагностики и лечения $\lg \mathsf{G}_{\mathtt{a}}$ -склерозирующего холангита. Основные положения. $\lg \mathsf{G}_{\mathtt{a}}$ -склерозирующих холангит — фиброзно-воспалительное заболевание, при котором поражаются внутрипеченочные и внепеченочные желчные протоки. Проявления IgG,-склерозирующего холангита схожи с изменениями при первичном склерозирующем холангите, опухолях желчных протоков и поджелудочной железы, в связи с чем, более трети пациентов с IgG,-склерозирующим холангитом подвергаются оперативным вмешательствам. На данный момент отсутствуют специфичные и чувствительные методы диагностики данного заболевания. Повышение уровня сывороточного IgG, наблюдается при многих других заболеваниях. Четырёхкратное повышение IgG, в сыворотке крови является более надежным маркером для диагностики IgG,-склерозирующего холангита, однако такое значение наблюдается лишь у небольшой доли пациентов. При визуализации желчных протоков выявляются сегментарные или протяженные стриктуры с престенотическим расширением и утолщением стенок. Глюкокортикостероиды остаются первой линией терапии для индукции и поддержания ремиссии заболевания. Рецидив наблюдается более чем у половины пациентов. Некоторые исследования также указывают на повышенный риск развития злокачественных опухолей. В данном обзоре освещены клинические и лабораторно-инструментальные проявления IgG_4 -склерозирующего холангита, проведена сравнительная характеристика с первичным склерозирующим холангитом и холангиокарциномой, а также представлены возможности терапии, прогноз и исходы заболевания. Заключение. IgG, -склерозирующий холангит — редкое и сложно диагностируемое заболевание, требующее проведения тщательной дифференциальной диагностики с первичным склерозирующим холангитом, раком желчных протоков и поджелудочной железы. Несмотря на относительно благоприятное течение и эффективность глюкокортикостероидов, заболевание часто рецидивирует и имеет неизвестный долгосрочный прогноз. Особое внимание уделяется риску развития злокачественных новообразований у данной группы пациентов, что подчеркивает необходимость пожизненного наблюдения за пациентами.

Ключевые слова: IgG_4 -склерозирующий холангит, первичный склерозирующий холангит, холангиокарцинома, иммуноглобулин IgG_4 аутоиммунный панкреатит

Конфликт интересов

Авторы заявляют, что данная работа, её тема, предмет и содержание не затрагивают конкурирующих интересов

ORCID ID: https://orcid.org/0000-0002-4244-6815

^{*}Контакты: Анна Константиновна Гусева, e-mail: ufimtseva_a_k@student.sechenov.ru

^{*}Contacts: Anna K. Guseva, e-mail: ufimtseva_a_k@student.sechenov.ru

Источники финансирования

Авторы заявляют об отсутствии финансирования при проведении исследования

Статья получена 06.02.2024 г.

Принята к публикации 12.03.2024 г.

Для цитирования: Гусева А.К., Охлобыстин А.В. ОСОБЕННОСТИ КЛИНИЧЕСКОГО ТЕЧЕНИЯ, ДИФФЕРЕНЦИАЛЬНОЙ ДИАГНОСТИКИ И ЛЕЧЕНИЯ IgG_4 -СКЛЕРОЗИРУЮЩЕГО ХОЛАНГИТА. Архивъ внутренней медицины. 2024; 14(2): 96-107. DOI: 10.20514/2226-6704-2024-14-2-96-107. EDN: FGADIS

Abstract

The aim: To present the state-of-the-art of clinical features, differential diagnosis and treatment of IgG_4 -related sclerosing cholangitis. **Key points:** IgG_4 -sclerosing cholangitis is a fibrotic inflammatory disease affecting the intrahepatic and extrahepatic bile ducts. The clinical features of IgG_4 -sclerosing cholangitis are similar to those of primary sclerosing cholangitis, bile duct cancer and pancreatic cancer. More than one third of patients with IgG_4 -sclerosing cholangitis undergo surgery. Currently, there are no specific and sensitive methods to diagnose this disease. Increased serum IgG_4 levels are observed in many other diseases. A fourfold increase in serum IgG_4 levels is a more reliable marker, but this feature is found in only a small percentage of patients. The imaging of bile ducts usually reveals segmental or extended strictures with prestenotic dilatation and wall thickening. Glucocorticosteroids are the first-line therapy for induction and maintenance of disease remission. More than a half of patients develop relapses. Several studies have found an increased risk of malignant tumors. This review describes the clinical, laboratory, and instrumental features of IgG_4 -sclerosing cholangitis. Comparative evaluation of diseases manifestations versus primary sclerosing cholangitis and cholangiocarcinoma is presented along with options of therapy, prognosis and outcomes of the disease. **Conclusion:** IgG_4 -sclerosing cholangitis is a rare and difficult to diagnose disease that requires careful differential diagnosis with primary sclerosing cholangitis, bile duct cancer and pancreatic cancer. Despite its relatively benign course and efficacy of glucocorticosteroid therapy, the disease recurs frequently and has an unknown long-term outcome. Special attention is paid to the risk of malignant neoplasms in this group of patients, emphasizing the need for lifelong follow-up.

Key words: IgG,-related sclerosing cholangitis, primary sclerosing cholangitis, cholangiocarcinoma, immunoglobulin IgG, autoimmune pancreatitis

Conflict of interests

The authors declare no conflict of interests

Sources of funding

The authors declare no funding for this study

Article received on 06.02.2024

Accepted for publication on 12.03.2024

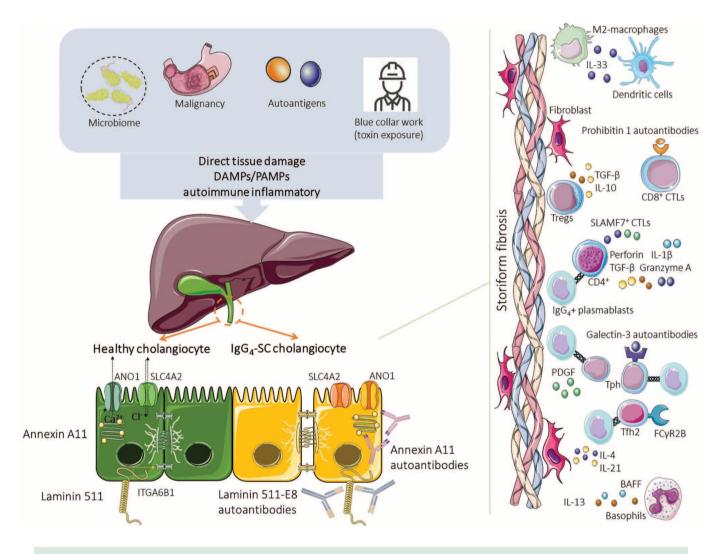
For citation: Guseva A.K., Okhlobystin A.V. Clinical Features, Differential Diagnosis and Treatment of IgG₄-Related Sclerosing Cholangitis. The Russian Archives of Internal Medicine. 2024; 14(2): 96-107. DOI: 10.20514/2226-6704-2024-14-2-96-107. EDN: FGADIS

 $AIP-autoimmune\ pancreatitis,\ GCS-glucocorticosteroids,\ MNP-malignant\ neoplasms,\ CT-computer\ tomography,\ MRI-magnetic\ resonance\ imaging,\ PSC-primary\ sclerosing\ cholangitis,\ US\ examination-ultrasound\ examination,\ CC-cholangiocarcinoma,\ AMA-anti-mitochondrial\ antibodies,\ ANA-anti-nuclear\ antibodies,\ ANCA-antineutrophil\ cytoplasmic\ antibodies,\ ASMA-anti-smooth\ muscle\ antibody,\ HLA-human\ leukocyte\ antigen,\ IgG_1-immunoglobulin\ G_1,\ IgG_2-immunoglobulin\ G_2,\ IgG_4-immunoglobulin\ G_4,\ IgG_4-AD,\ immunoglobulin\ G_4-associated\ disease,\ IgG_4-SC-immunoglobulin\ G_4-associated\ sclerosing\ cholangitis,\ SIR-standardised\ incidence\ ratio$

Introduction

Immunoglobulin G_4 -associated sclerosing cholangitis (Ig G_4 -SC) is a biliary manifestation of systemic Ig G_4 -associated disease (Ig G_4 -AD) [1, 2]. Ig G_4 -SC manifests as diffuse or focal inflammatory infiltration with Ig G_4 -positive plasma cells of intrahepatic and extrahepatic bile ducts, development of moire fibrosis, often with type 1 autoimmune pancreatitis, and rapid response to glucocorticosteroid therapy [3]. Due to similar clinical and instrumental manifestations of this condition and primary sclerosing cholangitis (PCS), bile duct and pancreatic cancer, over a third of patients undergo various surgeries [4]. The outcome and prognosis of this disease are understudied; however, more and more information suggests a higher risk of malignant neoplasms (MNOs) in patients with Ig G_4 -SC [1, 5, 6]. Glucocorticosteroids

(GCS) are used as an induction and maintenance therapy for disease remission [3]. Nevertheless, according to various studies, 30-50 % of patients experience relapses within 6 months after glucocorticosteroid discontinuation [7, 8]. This review presents current information on clinical course, differential diagnosis and therapy of IgG_4 -associated sclerosing cholangitis.


Epidemiology

According to the literature, the incidence of IgG_4 -SC is 2 cases per 100,000 people [9]. IgG_4 -SC affects primarily men (the ratio of 4 : 1) over 60 years of age (median age: 66.2 years old) [10, 11]. However, according to the studies, where the condition was observed in patients of 23 to 83 years of age, it can affect younger patients [7, 11].

Aetiology and Pathogenesis

Aetiology and pathogenesis of IgG_4 -SC are understudied [12]. The impact of genetic factors has been discussed, e.g. a genome-wide association study (GWAS), which enrolled 835 patients from Japan with various variants of IgG_4 -AD, established that genes HLA-DRB1 and FCGR2B are associated with a higher risk of IgG_4 -AD [13]. A majority of studies conclude that an autoimmune inflammation has a role to play in the disease pathogenesis. Patients with IgG_4 -SC had antibodies to galectin-3, laminin 511-E8, prohibitin 1, and annexin A11 [14–17]. However, no specific

autoantibodies have been found. There is an evidence of a possible contribution by allergic mechanisms in IgG_4 -AD. Increased serum IgE levels are observed in 30 % of patients with type 1 autoimmune pancreatitis (AIP), and every fifth patient has a history of allergic diseases, such as bronchial asthma, drug-induced allergy or chronic rhinosinusitis [17]. The possible role of changed microbiota in IgG_4 -SC development has been studied. An examination of faeces of patients with PSC, IgG_4 -SC and controls demonstrated reduced alpha diversity and changes in microbiota composition in the study groups vs. controls [18]. Besides, significant

Figure 1. Proposed pathogenesis of IgG_4 -related sclerosing cholangitis

Note: Exposure to autoantigens, DAMPs/PAMPs (produced by altered microbiome/malignant tumors) and hazardous industrial factors, through molecular mechanisms of mimicry, are possible causes of IgG_{τ} -CX development. Activation of the innate immune system leads to disruption of the adaptive immune system. IgG_{τ} and IgG_{τ} plasmablasts produce autoantibodies against annexin A11, laminin 511-E8, galectin-3, and progibitin 1. Antibodies against annexin A11 disrupt Cl^{τ} and $Ca^{2\tau}$ transport via ANO1 to the apical membrane of cholangiocytes. Antibodies against laminin 511-E8 block binding to membrane receptors (ITGA6B1), impairing cholangiocellular barrier function. Antibodies to galectin-3 and progibitin-1 affect B- and T-cell activation. Oligoclonal IgG_{τ} plasmoblasts support immune dysregulation through stimulation and reactivation of oligoclonal CD4 SLAMF7 cytotoxic T cells. In addition, due to PDGF secretion they contribute to the formation of storiform fibrosis.

Abbreviations: ANO1 — anoctamin 1; BAFF — B-cell activation factor; CD4 — cluster of differentiation 4; CTLs — cytotoxic T lymphocytes; DAMPs — damage-associated molecular patterns; PAMPs — pathogen-associated molecular patterns; FCγR2B — Fc γ receptor 2B; ITGA6B1 — integrin α 6β1; SLAMF7 — signaling lymphocytic activation molecule family member 7; PDGF — platelet-derived growth factor; SLC4A2 — solute carrier family 4 member 2; Tfh — follicular T helper 2 cells; TGF- β — Transforming growth factor- β ; Tph — peripheral T helper cells; Tregs — regulatory T cells.

 $The {\it figure was created using smart.servier}.$

differences in microbiota composition in patients with PSC and IgG₄-SC [21] have been noted. The study of unfavourable environmental factors is also of great importance. A study of 101 patients with IgG₄-SC and autoimmune pancreatitis (AIP) showed that 68 % of them were blue-collar-workers, i.e. those who were manual industrial labourers exposed to industrial solvents and gases [19]. This value was far higher than in controls, where blue-collar-workers accounted for 39 % (OR = 3.66; 95 % CI: 2.18-6.13; n = 404; p < 0.0001).Moreover, it has been found out that prolonged contact with industrial gases, dust and organic substances, such as asbestos, for over a year is associated with a higher risk of IgG_4 -SC and AIP (OR = 2.14; 95 % CI: 1.26–3.16; p < 0.001, and OR = 2.95; 95 % CI: 1.78-4.90; p < 0.001, respectively) [19]. Figure 1 shows key concepts of possible pathogenesis of IgG₄-SC.

Clinical Presentation

Approximately 25 % of IgG_4 -SC cases are asymptomatic [11]. Most common manifestations of IgG_4 -SC are obstructive jaundice (35–80 %), sharp weight loss, moderate abdominal pain, rarely — skin itching (13 %) [11]. Often, patients who underwent bile duct treatment and diagnostic procedures experienced signs of infectious cholangitis, such as fever [20]. According to various sources, 72–95 % of IgG_4 -SC patients had concomitant type 1 AIP [11, 21, 22]. Such cases presented with manifestations associated with the development of

exocrine and endocrine deficiency of pancreas (53 % and 37 %, respectively) [7]. Also, in numerous cases, IgG_4 -SC was concomitant to other IgG_4 -associated diseases, such as tubulo-interstitial nephritis (5 %), dacryoadenitis (15 %), salivary adenitis (26 %), retroperitoneal fibrosis (5 %), mediastinal and axillary lymphoadenopathy (8 %) [10].

Laboratory Diagnostics

Blood samples of patients with IgG₄-SC demonstrate higher cholestasis marker levels: alkaline phosphatase, gamma-glutamyltranspeptidase, total bilirubin, mainly due to direct fraction [3, 23]. Increased serum IgG_{A} levels of > 1.35 g/L were observed in 75–90 % of patients with IgG₄-SC [22, 24, 25]. Studies showed that a 4-fold increase in blood IgG, levels was highly specific and had positive prognostic value (100 %); however, sensitivity was significantly reduced and made 42 % (95 % CI: 31-55) [3, 24, 26]. Also, there are cases of moderately increased serum IgG4 levels in patients with PSC (9-22 %) and cholangiocarcinoma (CC) (8-14 %)[22, 27, 28]. Table 1 shows average serum IgG₄ levels in IgG₄-SC and other diseases. According to a Japanese study, the threshold value of serum IgG, of 2.07 g/L can be a useful additional tool to differentiate types 3 and 4 IgG₄-SC and CC [22]. In order to differentiate IgG₄-SC and PSC, the threshold value of serum IgG, was 1.77 g/L, with the sensitivity and specificity being 91.5 % and 87.6 %, respectively [22]. A study

Table 1. Mean serum IgG_4 levels in IgG_4 -sclerosing cholangitis, primary sclerosing cholangitis, cholangiocarcinoma and pancreatic cancer

Disease	Serum IgG ₄ (M±SD)						
	Hirano et al. 2006[33]	Ohara et al. 2013 [22]	Nakazawa et al. 2012[34]	Oseini et al. 2011[35]			
IgG ₄ -SC	-	6,46±6,62	-	2,771±0,552**			
IgG ₄ -SC type 1		6,13±6,18 [*]	5,48±7,71*				
vs	-	vs	vs	-			
PCa		$0,593\pm0,659^{*}$	$0,49\pm0,73^{*}$				
IgG ₄ -SC type 2		7,99±8*	$8,84\pm8,54^{*}$				
vs	-	vs	vs	-			
PSC		0,687±0,86*	$0,5\pm0,45^{*}$				
IgG ₄ -SC		6,46±7,11*	5,14±5,42*				
types 3,4 vs	-	vs	vs	-			
CC		$0,523\pm0,468^{*}$	$0,64\pm0,59^{*}$				
PSC	1,86±2,41	-	-	-			
CC	0,624±0,378	-	-	0,646±0,063**			
PCa	66±3,8	-	-	-			

 $\textbf{Note:} \ \textbf{IgG}_4\text{-SC} - \textbf{IgG}_4\text{-sclerosing cholangitis;} \ \textbf{PSC} - \textbf{primary sclerosing cholangitis;} \ \textbf{CC} - \textbf{cholangicarcinoma;} \ \textbf{PCa} - \textbf{pancreatic cancernosing cholangitis;} \ \textbf{CC} - \textbf{cholangicarcinoma;} \ \textbf{PCa} - \textbf{pancreatic cancernosing cholangitis;} \ \textbf{CC} - \textbf{cholangicarcinoma;} \ \textbf{PCa} - \textbf{pancreatic cancernosing cholangitis;} \ \textbf{CC} - \textbf{cholangicarcinoma;} \ \textbf{PCa} - \textbf{pancreatic cancernosing cholangitis;} \ \textbf{CC} - \textbf{cholangicarcinoma;} \ \textbf{PCa} - \textbf{pancreatic cancernosing cholangitis;} \ \textbf{CC} - \textbf{cholangicarcinoma;} \ \textbf{PCa} - \textbf{pancreatic cancernosing cholangitis;} \ \textbf{CC} - \textbf{cholangicarcinoma;} \ \textbf{PCa} - \textbf{pancreatic cancernosing cholangitis;} \ \textbf{CC} - \textbf{cholangicarcinoma;} \ \textbf{PCa} - \textbf{pancreatic cancernosing cholangitis;} \ \textbf{CC} - \textbf{cholangicarcinoma;} \ \textbf{PCa} - \textbf{pancreatic cancernosing cholangitis;} \ \textbf{CC} - \textbf{cholangicarcinoma;} \ \textbf{PCa} - \textbf{pancreatic cancernosing cholangitis;} \ \textbf{CC} - \textbf{cholangicarcinoma;} \ \textbf{CC} - \textbf{chol$

p < 0.05

by Boonstra K. et al. established that, if IgG, levels are up to two normal values, it is recommended to measure the IgG_4/IgG_1 ratio, which in IgG_4 -SC was ≥ 0.24 , with the sensitivity and specificity being 86 % and 95 %, respectively [26]. Similar results were obtained by Liming Tan et al. (2019), who analysed blood levels of IgG₄, CA19-9, autoantibodies (ANA, ASMA, AMA, ANCA) in 45 patients with IgG₄-SC, 80 — with PSC, 41 — with biliary duct tumour, 52 — with pancreatic cancer, and 48 healthy volunteers [29]. The study demonstrated that a higher serum IgG, level was observed in patients with IgG_4 -SC (86.67 %) vs. controls (p < 0.01) [29]. Serum IgG₄ levels were also elevated in patients with PSC (25 %), bile duct cancer (7.32 %) and pancreatic cancer (9.62 %) [29]. Positive ANAs were observed in patients with IgG₄-SC and PSC (40 % and 32.5 %, respectively); however, the difference was not statistically significant [29]. The rate of ANCA, ASMA and AMA in patients with IgG₄-SC was significantly lower than in patients with PSC (p < 0.01) [29]. Positive ANCAs were observed more often in patients with PCS as compared to patients with IgG₄-SC (61.25 % and 6.67 %, respectively) (p < 0.01)[29]. CA19-9 levels were higher in over a half of patients with IgG₄-SC (51.11 %) and in a majority of patients with bile duct adenocarcinoma and pancreatic cancer (92.68 % and 90.38 %, respectively) [29]. Significant changes in CA19-9 levels reduced in the presence of jaundice. Also, there are published data on increased bile IgG, levels in patients with IgG₄-SC. The threshold value of 0.038 g/L allowed differentiating IgG₄-SC and patients with PSC and CC, with sensitivity and specificity being 100 % and 77 %, respectively [30]. However, in order to implement this method in the wide clinical practice, additional studies are required. Patients with IgG₄-SC and AIP had higher IgG, values as compared to patients with isolated autoimmune pancreatitis or primary sclerosing cholangitis, with high specificity (97 %) and positive prognostic value (91 %) [38]. High IgG_1 levels (8.2 ± 2.6 g/L) indicated primary sclerosing cholangitis [31]. Also, it has been established that the IgG₄/IgG ratio of > 0.129 was more often indicative of IgG₄-AD (OR 31.25; 95 % CI: 15.31–63.79; p < 0.001) [32].

Classification

In 2004, Nakazawa et al. proposed an IgG_4 -SC classification taking into account the cholengiography pattern [36]. *Type 1* (64 %) is associated with narrowing of the distal section of the choledochous duct. Isolation of this type is disputable, because some experts

believe that duct narrowing is a result of compression of an enlarged pancreatic head [37]. However, is some cases, type 1 IgG₄-SC is not associated with autoimmune pancreatitis [38]. This type should be differentiated from pancreatic head tumour, pancreatic pseudotumor and cholangiocarcinoma. Type 2 is characterised by involvement of intrahepatic and extrahepatic bile ducts. This type is further subdivided into type 2a (5 %) and type 2b (8 %). Type 2a presents with narrowing of intrahepatic bile ducts and prestenotic enlargement. In type 2b, narrowing of intrahepatic bile ducts is combined with reduction in the number of side ducts, however, without prestenotic enlargement. In this type, differential diagnosis is with PSC. *Type 3* of IgG_4 -SC (10 %) is characterised by narrowing of the distal section of the choledochous duct and confluence area. Type 4 (10 %) manifests only with duct narrowing near the hepatic hilum. Types 3 and 4 of IgG₄-SC mimic changes typical of CC, therefore, morphological verification is essential in order to rule out tumour. If changes on a cholangiogram do not correspond to any of these types, the condition should be classified as an unidentified type. Comparison of IgG₄-sclerosing cholangitis, primary sclerosing cholangitis and cholangiocarcinoma is presented in Table 2.

Methods of Instrumental Diagnostics

Images of bile ducts in IgG₄-SC patients demonstrate segmental or extensive stenosis of bile ducts, with prestenotic enlargement and wall thickening [49]. PSC is characterised by short, moniliform stenosis, with diverticula-like duct protrusion [36]. According to another study, typical signs of IgG, sclerosing cholangitis seen during intraduct ultrasound were circular symmetric thickening of bile duct wall with even external and internal edges, as well as wall thickening up to > 0.8 mm outside the stenosis area [50]. This threshold wall thickness was highly sensitive (95-100 %) and specific (91 %) for differentiation from CC [50]. Comparison of changes seen during intraduct ultrasound is presented in Table 3. According to studies, CT signs of IgG₄-SC include: circular duct wall thickening with an even external and internal contour; uniform contrast accumulation in arterial phase; involvement of the intrapancreatic section of the bile duct; discontinuity of involvement; concomitant changes in pancreas; visible lumen; funnel-like narrowing of the proximal section of the common bile duct; extended bile ducts proximal to stenosis to 9 mm [51]. A comparative study by Yata

Table 2. Comparative characterization of IgG_4 -sclerosing cholangitis, primary sclerosing cholangitis and cholangiocarcinoma

Parameter	IgG ₄ -SC	PSC	CC	
Prevalence	2/100.000[9]	1-16/100.000[39]	5,9/100.000[40]	
Age (years)	50-60[24]	25-45[41]	50-70[42]	
Gender (m:f)	4-8:1[23]	2:1[43]	1.5:1[44]	
Clinical features	jaundice, significant weight loss, epigastric pain [24]	up to 50% asymptomatic, jaundice, pruritus [45]	asymptomatic in early stages, especially in intrahepatic CC; painless jaundice in 90% of patients with extrahepatic CC [46]	
Other organ involvement	type 1 AIP (up to 90 %), generalized lymphadenopathy, sialoadenitis, retroperitoneal fibrosis [24]	50-80 % IBD [45] (85-90 % — UC; 10-15 % -CD)	metastases	
Elevated serum $\operatorname{IgG_4}$ level	74-90 %[26]	9-22 %[27]	8-22%[22,28]	
CA-19-9	51 % 153–292 U/ml[29]	12 % 47–97 U/ml[29]	93 % 329–384 U/ml[29]	
pANCA	7 %[29]	61 %[29]	-	
Histology	$\label{eq:continuous} Iymphoplasma cellular infiltrate $$ (>10\ IgG_4+\ plasma\ cell,\ IgG_4/IgG>0,40), $$ storiform\ fibrosis,\ obliterative\ phlebitis [47]$	periportal sclerosis, onion- skin fibrosis[47]	dysplasia, biliary neoplasia, atypical cells[47]	
Immunohistochemistry: IgG_4 + plasma cell	50-90%[24]	5–25 %[27]	25 % (n=4)[48]	
Immunohistochemistry: ${\rm IgG_4+:} {\rm IgG+} \ {\rm plasma} \ {\rm cell} \ {\rm ratio}$	>0.40[24]	-	-	
Response to GS	rapid, distinct in the early stages[3,23]	no[39]	-	
Prognosis	favorable[23,24]	progressive disease, depends on the response to UDCA [41]	at 5 years after diagnosis, survival rates range from 7 % to 20 %[40]	

 $\textbf{Note:} \ \textbf{IgG}_{\textbf{a}}\text{-SC} - \textbf{IgG}_{\textbf{a}}\text{-} \text{sclerosing cholangitis;} \ \textbf{PSC} - \textbf{primary sclerosing cholangitis;} \ \textbf{CC} - \textbf{cholangiocarcinoma;} \ \textbf{GS} - \textbf{glucocorticoids;} \ \textbf{UDCA} - \textbf{ursodeoxycholic aciddition} \\ \textbf{ODCA} - \textbf{ursodeoxycholic aciddition} \\ \textbf{ODCA}$

M. et al. (2016) demonstrated that a combination of the above CT signs was sensitive (80 %) and specific for differentiation from CC [51]. Besides, a double contour see on CT was highly specific for cholangiocarcinoma (90 %), unlike single-layer contrast accumulation in IgG_4 -SC [51]. Tokala A. et al. (2014) proposed to use the wall thickness of the common bile duct of > 2.5 mm, seen on MRI, as a diagnostic criterion to differentiate from PSC [49]. In 71.4–100 % of cases, thickened bile duct walls evenly accumulated contrast [49, 52, 53], and were iso- or hyperintense during the portal vein or delayed phase vs. hepatic parenchyma [49, 52, 53].

Morphological Characteristics

Typical morphological changes in IgG_4 -SC are lymphoplasmacytic infiltration, moire fibrosis, obliterating phlebitis, sometimes — eosinophilic infiltration [3]. In order to verify IgG_4 -SC morphologically, it is

required to observe at least 10 IgG₄-positive plasma cell HPF (x400) in the fine-needle aspiration material, or > 50 cells in intraoperative samples, including edge biopsy, and the ratio of IgG₄/IgG-positive cells of at least 40 % [20, 55]. However, IgG₄-positive plasma cells can be observed in PSC and cholangiocarcinoma [9, 28]. Typical morphological changes in IgG₄-SC were usually absent, since the key changes take place in submucosa and deeper [9]. Moreover, stenting can cause non-specific changes, such as atypical epithelial cells, epithelial ulceration and inflammatory infiltration, which can facilitate incorrect interpretation as signs of PSC and CC [56, 57]. In fine-needle biopsy of the liver, only 57 % of patients with intrahepatic involvement of hepatic ducts had > 10 IgG₄-positive plasma cells and only in 8 % of cases — with involvement of extrahepatic bile ducts only [58]. Sensitivity and specificity of intraductal biopsy were 52 % and 96 %, respectively [59]. Biopsy of major duodenal papilla ampulla is indicated

Table 3. Comparative characterization of intraductal ultrasound findings in patients with IgG_4 -sclerosing cholangitis, primary sclerosing cholangitis and cholangiocarcinoma

Parameter	Naitoh I., et al., 200)9 [50]	[Nubota K., et al., 2011]		011 [6]	1[6] Naitoh I., et al., 2015[54]		
	IgG_4 -SC								
Wall thickness (mm)	intrahe- patic biliary ducts (n=16)	extrahe- patic biliary ducts (n=9)	CC (n=11)	IgG₄-SC (n=6)	CC (n=12)	PSC (n=10)	IgG ₄ -SC (n=35)	PSC (n=15)	
M±SD Me(IQR)	2,3±0,4	2,6±0,3	3,3±1,2	3,7±0,9	2,8±0,6	2,6±0,9	2.5 (2.2–2.9)	2.4 (1.8–3.0)	
Wall thickness (n): symmetric:asymmetric	11:41	6:3 ²	1:9	6:0*	1:11*	2:8*	27:6*	1:14*	
Outer margin (n): clear: unclear	15:0	9:02	2:9	-	-	-	33:0*	2:13*	
Inner margin (n):									
- smooth:irregular	15:0	9:02	0:9	6:0*	1:11*	1:9*	33:0*	0:15*	
- papillary	0	0	2	-	-	-	-	-	
- diverticulum-like outpouching	-	-	-	-	-	-	0*	10*	
Internal echo (n): homogeneous:heterogeneous	15:0¹	9:02	1:10	-	-	-	33:0*	7:8*	
Extrinsic compression	1	0	0	-	-	-	2	0	
Three layers structure (n): - preservation:disappearance	-	-	-	-	-	-	33:0*	0:15*	

 $\textbf{Note:} \ \operatorname{IgG_4-SC} - \operatorname{IgG_4-sclerosing} \ \operatorname{cholangitis}; \ \operatorname{PSC} - \operatorname{primary} \ \operatorname{sclerosing} \ \operatorname{cholangitis}; \ \operatorname{CC} - \operatorname{cholangiocarcinoma}.$

*p < 0.05

for patients with IgG_4 -SC and concomitant type 1 AIP; however, this procedure was associated with a high risk of complications, such as pancreatitis, recurrent Hayem-Widal syndrome and papillitis [59].

Treatment

GCSs are a first-line therapy for remission induction in IgG₄-SC. A recommended GCS dose is 0.5-0.8 mg/kg/day per os (a standard starter prednisolone dose is 30-40 mg/kg/day) for 4 weeks with subsequent dose reduction by 5 mg once every 1-2 weeks [3, 45]. Results show that the average prednisolone dose (0.5-0.6 mg/kg) was as efficient as the high dose (0.8–1 mg/kg) for remission [60]. Given a high rate of relapses after GCS discontinuation (> 50 %) [24], studies recommend using a maintenance low-dose therapy with GCS (2.5–7.5 mg/day), for one to three years [61]. According to a retrospective analysis, maintenance therapy with low-dose prednisolone for over three years improved survival rates of patients with IgG₄-SC [62]. In case of insufficient response to GCS therapy or disease relapse, it is recommended to use immunosuppressants as a

send-line therapy for remission maintenance [3]. This group of drugs includes thiopurines (azathioprine, 6-mercaptopurine), mycophenolate mofetil, methotrexate and calcineurin inhibitors (tacrolimus, cyclosporin A) [63-65]. A retrospective analysis to compare cyclophosphamide and mycophenolate mofetil did not demonstrate any superiority of one drug over the other in terms of remission induction [66]. Rituximab was prescribed to induce and maintain remission if GCS and steroid-sparing drugs were contraindicated, or if these agents were inefficient [67, 68]. According to a meta-analysis, complete response in 6 months was observed in 88.9 % (95 % CI 80.5-93.9), the rate of relapses was 21 % (95 % CI 10.5-40.3), median time to relapse was 10 months [67]. A higher relapse rate of 35.9 % (95 % CI 17.3-60.1) was recorded in patients with multisystemic damages (in addition to pancreas and/or bile ducts) [67]. Adverse events were observed in 25 % of patients: infusion reactions (8 patients), infectious complications (9 patients), hypogammaglobulimenia (1 patient), gall bladder cancer (1 patient) [67]. The rate of relapses after rituximab induction was

 $^{^{1}}p$ <0.01 IgG $_{4}$ -SC with intrahepatic biliary duct involvement vs CC

 $^{^{2}}$ p <0.01 Ig G_{4} -SC with extrahepatic biliary duct involvement vs CC

still high; the drug should be used with caution in IgG_4 -SC, given the potential risk of infectious complications, such as bacterial cholangitis, cholecystitis and hepatic abscesses [12].

There are various approaches to the matter of bile duct stenting in patients with IgG₄-SC. In their study, Miyazawa M. et al. (2020) emphasise a higher risk of chololithiasis in patients who undergo stenting before GCS initiation [69]. Out of 69 patients with IgG₄-SC, only 41 patients received GCS without stenting and achieved clinical improvements, including 10 patients with obstructive jaundice [69]. The other 28 patients (40.6 %) underwent bile duct stenting before GCS initiation [69]. In this group, after successful GCS therapy, the stent was removed in 13 patients (46.4 %), while 10 patients (35.7%) experienced spontaneous stent displacement [69]. During the follow-up period, three patients (4.3 %), who underwent stenting, had bile duct stones, while no patients after GCS therapy had this condition (p = 0.032) [69]. Another study demonstrated that the incidence of stenting-associated acute cholangitis was significantly lower in patients who had previous steroid therapy as compared to those who did not have any steroids (the incidence of no acute cholangitis in one month): 100 % vs 90 %; log-rank test p = 0.0278) [70].

Outcomes and Prognosis

Given the high efficacy of glucocorticosteroids, prognosis for patients with IgG₄-CS is favourable. 10-25 % of patients with IgG₄-SC can experience spontaneous remission [71]. The long-term prognosis is poorly studied; biliary cirrhosis is observed in 4.5-7.5 % of cases [72]; also, there are individual cases of portal hypertension [73] and one case of hepatic decompensation, requiring liver transplant [74]. Kensuke Kubota et al. (2023) conducted a retrospective data analysis of 924 patients with IgG₄-SC [62]. According to the study results, malignant neoplasms were recorded in 15 % (139/924) of patients: before IgG₄-CS developed - 48 cases, simultaneously with the diagnosis of IgG₄-SC or within 3 months after the diagnosis — 18 cases, after IgG₄-SC diagnosis — 83 cases [62]. In patients who had malignant neoplasms diagnosed significantly earlier than IgG₄-SC, it was most commonly localised in colon (27 %; 13 cases out of 48) and urinary system (25 %; 12 cases out of 48) [62]. Where cancer and IgG₄-SC were diagnosed at the same time, the most common malignancy was malignant neoplasm of the upper section of the GI tract (33 %; 6 cases out of 18) [62]. When cancer was diagnosed after the IgG₄-SC diagnosis, the most common cancer was urinary tract cancer (36 %; 30 cases out of 83), stomach and duodenum cancer (34 %; 28 cases out of 83) and colon cancer (28 %; 28 cases out of 83) [62]. Also, eight cases of bile duct cancer and nine cases of pancreatic cancer were diagnosed, all of them, but one, developed after IgG₄-SC. In the majority of cases, pancreatic cancer was diagnosed within 10 years after the diagnosis of IgG₄-SC, while bile duct cancer was diagnosed within two years [62]. Also, a multifactor analysis revealed that an IgG₄-SC relapse is an independent risk factor for malignancy [62]. Relapses were observed in 19.7 % (182/924) of patients [62]. Overall, the standardised incidence ratio (SIR) for MNPs after the diagnosis of IgG₄-SC was 12.68 (6.89-8.79) [62]. SIR values for bile duct and pancreatic cancer were 27.35 (23.39-31.12) and 18.43 (16.44-02.97), respectively [62]. Cumulative survival was statistically higher in patients who had maintenance steroid therapy (p < 0.001) [62]. Another retrospective study concluded that patients with IgG₄-SC are at a higher risk of malignancies, including pancreatic and bile duct cancer [5]. SIR for pancreatic and bile duct cancer was 10.30 and 8.88, respectively [5]. The risk of malignancies was high during the first year and five years after the IgG₄-SC diagnosis; SIR was 2.58 and 2.44, respectively [5].

Conclusion

 ${\rm IgG_4}$ -SC is a rare condition which is challenging to diagnose; it can be mistaken for other bile duct diseases, such as PSC and CC. Diagnosis requires a comprehensive assessment of clinical, laboratory and instrumental data and often histological confirmation. In many cases, the condition is diagnosed after an assessment of the efficacy of a trial GCS therapy, usually with fast and positive response. Prognosis is favourable; however, life-long follow-up is required due to a high rate of relapses and a high risk of malignant transformation.

Вклад авторов:

Все авторы внесли существенный вклад в подготовку работы, прочли и одобрили финальную версию статьи перед публикацией

Гусева А.К. (ORCID ID: https://orcid.org/0000-0002-4244-6815): обзор литературных источников, написание текста

оозор литературных источников, написание текста

Охлобыстин А.В. (ORCID ID: https://orcid.org/0000-0002-4617-2292): редактирование текста, проверка критически важного интеллектуального содержания

Author Contribution:

All the authors contributed significantly to the study and the article, read and approved the final version of the article before publication Guseva A.K. (ORCID ID: https://orcid.org/0000-0002-4244-6815):

literature review, text writing.

Okhlobystin A.V. (ORCID ID: https://orcid.org/0000-0002-4617-2292): text editing, verification of key intellectual content

Список литературы / References:

- Drazilova S., Veseliny E., Lenartova P.D., et al. IgG4-Related Sclerosing Cholangitis: Rarely Diagnosed, but not a Rare Disease. Can J Gastroenterol Hepatol. 2021; 2021: 1959832. doi: 10.1155/2021/1959832.
- Kamisawa T., Zen Y., Pillai S., et al. IgG4-related disease.
 The Lancet 2015; 385: 1460–1471. doi: 10.1016/S0140-6736(14)60720-0.
- Löhr J.M., Beuers U., Vujasinovic M., et al. European guideline on IgG4-related digestive disease — UEG and SGF evidence-based recommendations. United European Gastroenterol J. 2020 Jul; 8(6): 637-666. doi: 10.1177/2050640620934911.
- Roos E., Hubers L.M., Coelen R.J. S., et al. IgG4-Associated Cholangitis in Patients Resected for Presumed Perihilar Cholangiocarcinoma: A 30-Year Tertiary Care Experience. American Journal of Gastroenterology 2018; 113: 765–772. doi: 10.1038/s41395-018-0036-5.
- Kurita Y., Fujita Y., Sekino Y., et al. IgG4-related sclerosing cholangitis may be a risk factor for cancer. J Hepatobiliary Pancreat Sci 2021; 28: 524–532. doi: 10.1002/jhbp.957.
- Kubota K., Kato S., Uchiyama T., et al. Discrimination between sclerosing cholangitis-associated autoimmune pancreatitis and primary sclerosing cholangitis, cancer using intraductal ultrasonography. Digestive Endoscopy. 2011; 23: 10–16. doi: 10.1111/j.1443-1661.2010.01039.x.
- Huggett M.T., Culver E.L., Kumar M., et al. Type
 1 autoimmune pancreatitis and IgG4-related sclerosing
 cholangitis is associated with extrapancreatic organ
 failure, malignancy, and mortality in a prospective UK
 cohort. Am J Gastroenterol 2014; 109: 1675–1683.
 doi: 10.1038/ajg.2014.223.
- Khosroshahi A., Wallace Z.S., Crowe J.L., et al.
 International consensus guidance statement on the management and treatment of IgG4-related disease.
 Arthritis and Rheumatology 2015; 67: 1688–1699.
 doi: 10.1002/art.39132.
- Kamisawa T., Nakazawa T., Tazuma S., et al. Clinical practice guidelines for IgG4-related sclerosing cholangitis. J Hepatobiliary Pancreat Sci 2019;26:9–42. doi: 10.1002/jhbp.596.

- Xiao J., Xu P., Li B., et al. Analysis of clinical characteristics and treatment of immunoglobulin G4-associated cholangitis. Medicine (United States) 2018; 97. doi: 10.1097/MD.0000000000009767.
- Tanaka A., Tazuma S., Okazaki K., et al. Clinical Features, Response to Treatment, and Outcomes of IgG4-Related Sclerosing Cholangitis. Clinical Gastroenterology and Hepatology 2017; 15: 920-926.e3. doi: 10.1016/j. cgh.2016.12.038.
- Kersten R., Trampert D.C., Herta T., et al. IgG4-related cholangitis a mimicker of fibrosing and malignant cholangiopathies. J Hepatol. 2023;79(6):1502-1523. doi: 10.1016/j.jhep.2023.08.005.
- Terao C., Ota M., Iwasaki T., et al. IgG4-related disease in the Japanese population: a genome-wide association study. Lancet Rheumatol 2019; 1: e14–22. doi: 10.1016/S2665-9913(19)30006-2.
- 14. Perugino C.A., AlSalem S.B., Mattoo H., et al. Identification of galectin-3 as an autoantigen in patients with IgG4 -related disease. Journal of Allergy and Clinical Immunology 2019; 143: 736-745.e6. doi: 10.1016/j. jaci.2018.05.011.
- Shiokawa M., Kodama Y., Sekiguchi K., et al. Laminin 511 is a target antigen in autoimmune pancreatitis. Sci Transl Med. 2018; 10(453): eaaq0997. doi: 10.1126/scitranslmed. aaq0997.
- Du H., Shi L., Chen P., et al. Prohibitin is involved in patients with IgG4 related disease. PLoS One. 2015; 10(5): e0125331. doi: 10.1371/journal.pone.0125331.
- Hubers L.M., Vos H., Schuurman A.R., et al. Annexin A11 is targeted by IgG4 and IgG1 autoantibodies in IgG4-related disease. Gut. 2018; 67: 728–735. doi: 10.1136/gutinl-2017-314548.
- Liu Q., Li B., Li Y., et al. Altered faecal microbiome and metabolome in IgG4-related sclerosing cholangitis and primary sclerosing cholangitis. Gut. 2022; 71: 899–909. doi: 10.1136/gutjnl-2020-323565
- Hubers L.M., Schuurman A.R., Buijs J., et al. Blue-collar work is a risk factor for developing IgG4-related disease of the biliary tract and pancreas. JHEP Reports. 2021; 3(6): 100385 doi: 10.1016/j.jhepr.2021.100385.
- Wallace Z.S., Naden R.P., Chari S., et al. The
 2019 American College of Rheumatology/European
 League against Rheumatism classification criteria for
 IgG4-related disease. Ann Rheum Dis. 2020; 79: 77–87.
 doi: 10.1136/annrheumdis-2019-216561.
- Moon S.H., Kim M.H., Lee J.K., et al. Development of a scoring system for differentiating IgG4-related sclerosing cholangitis from primary sclerosing

- cholangitis. J Gastroenterol. 2017; 52: 483–493. doi.org/10.1007/s00535-016-1246-5.
- 22. Ohara H., Nakazawa T., Kawa S., et al. Establishment of a serum IgG4 cut-off value for the differential diagnosis of IgG4-related sclerosing cholangitis: A Japanese cohort. Journal of Gastroenterology and Hepatology (Australia). 2013; 28: 1247–1251. doi: 10.1111/jgh.12248.
- Madhusudhan K.S., Das P., Gunjan D., Srivastava D.N., Garg P.K. IgG4-Related sclerosing cholangitis: A clinical and imaging review. American Journal of Roentgenology. 2019; 213: 1221–1231. doi: 10.2214/AJR.19.21519.
- Löhr J.M., Vujasinovic M., Rosendahl J., et al. IgG4-related diseases of the digestive tract. Nat Rev Gastroenterol Hepatol. 2022; 9(3): 185-197. doi: 10.1038/s41575-021-00529-y.
- Culver E.L., Sadler R., Simpson D., et al. Elevated serum IgG4 levels in diagnosis, treatment response, organ involvement, and relapse in a prospective IgG4-related disease UK cohort. American Journal of Gastroenterology. 2016; 111: 733–743. doi: 10.1038/ajg.2016.40.
- Boonstra K., Culver E.L., de Buy Wenniger L.M., et al.
 Serum immunoglobulin G4 and immunoglobulin G1 for distinguishing immunoglobulin G4-associated cholangitis from primary sclerosing cholangitis. Hepatology. 2014;
 1954–1963. doi: 10.1002/hep.26977.
- Manganis C.D., Chapman R.W., Culver EL. Review of primary sclerosing cholangitis with increased IgG4 levels. World J Gastroenterol. 2020; 26: 3126–3144. doi: 10.3748/wjg.v26.i23.3126.
- Nasser R., Gilshtein H., Mansour S., et al. Isolated
 Type Immunoglobulin G4 Sclerosing Cholangitis: The
 Misdiagnosed Cholangiocarcinoma. J Clin Med Res. 2021;
 13: 75–81. doi: 10.14740/jocmr4428.
- 29. Tan L., Guan X., Zeng T., et al. The significance of serum IgG4 and CA19-9, autoantibodies in diagnosis and differential diagnosis of IgG4-related sclerosing cholangitis. Scand J Gastroenterol. 2018; 53: 206–211. doi: 10.1080/00365521.2017.1416159.
- Navaneethan U., Gutierrez N.G., Jegadeesan R., et al. IgG4 levels in bile for distinguishing IgG4-associated cholangiopathy from other biliary disorders: A single blinded pilot study. Clin Endosc. 2014; 47: 555–559. doi: 10.5946/ce.2014.47.6.555.
- Vujasinovic M., Maier P., Maetzel H., et al. Immunoglobulin G subtypes-1 and 2 differentiate immunoglobulin G4-associated sclerosing cholangitis from primary sclerosing cholangitis. United European Gastroenterol J. 2020; 8: 584–593. doi: 10.1177/2050640620916027.

- 32. Wang W., Li Y., Feng H. The Significance of Serum IgG4/IgG and IgG4/IgG1 Ratio in the Diagnosis Value of IgG4-Related Diseases. Discov Med. 2023; 35(177): 476-482. doi: 10.24976/Discov. Med.202335177.48
- Hirano K., Kawabe T., Yamamoto N., et al. Serum IgG4 concentrations in pancreatic and biliary diseases. Clinica Chimica Acta. 2006; 367: 181–184. doi: 10.1016/j. cca.2005.11.031.
- Nakazawa T., Naitoh I., Hayashi K., et al. Diagnostic criteria for IgG4-related sclerosing cholangitis based on cholangiographic classification. J Gastroenterol. 2012; 47: 79–87. doi: 10.1007/s00535-011-0465-z.
- Oseini A.M., Chaiteerakij R., Shire A.M., et al. Utility
 of serum immunoglobulin G4 in distinguishing
 immunoglobulin G4-associated cholangitis from
 cholangiocarcinoma. Hepatology. 2011; 54: 940–948.
 doi: 10.1002/hep.24487.
- 36. Nakazawa T, Ohara H, Sano H, et al. Cholangiography can discriminate sclerosing cholangitis with autoimmune pancreatitis from primary sclerosing cholangitis. Gastrointest Endosc. 2004; 60(6): 937-944. doi: 10.1016/s0016-5107(04)02229-1
- Hirano K., Tada M., Isayama H, et al. Endoscopic evaluation of factors contributing to intrapancreatic biliary stricture in autoimmune pancreatitis.
 Gastrointest Endosc. 2010; 71: 85–90. doi: 10.1016/j. gie.2009.08.008.
- Nakazawa T., Ikeda Y., Kawaguchi Y., et al. Isolated intrapancreatic IgG4-related sclerosing cholangitis. World J Gastroenterol. 2015; 21: 1334–1343. doi: 10.3748/wjg. v21.i4.1334.
- Gochanour E., Jayasekera C., Kowdley K. Primary
 Sclerosing Cholangitis: Epidemiology, Genetics, Diagnosis, and Current Management. Clin Liver Dis (Hoboken). 2020;
 15: 125–128. doi: 10.1002/cld.902.
- Banales J.M., Marin J.J. G., Lamarca A., et al.
 Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol. 2020; 17: 557–588. doi: 10.1038/s41575-020-0310-z.
- 41. Bowlus C.L., Arrivé L., Bergquist A., et al. AASLD practice guidance on primary sclerosing cholangitis and cholangiocarcinoma. Hepatology. 2023; 77: 659–702. doi: 10.1002/hep.32771.
- 42. Tasch J.J., Dube N. An unusual presentation of advanced intrahepatic cholangiocarcinoma: When biopsy results fail. American Journal of Case Reports. 2018; 19: 35–40. doi: 10.12659/AJCR.906165.

- Invernizzi F., Cilla M., Trapani S., et al. Gender and Autoimmune Liver Diseases: Relevant Aspects in Clinical Practice. J Pers. Med. 2022; 12(6): 925. doi: 10.3390/jpm12060925.
- 44. Van Dyke A.L., Shiels M.S., Jones G.S., et al. Biliary tract cancer incidence and trends in the United States by demographic group, 1999-2013. Cancer. 2019; 125: 1489–1498. doi: 10.1002/cncr.31942.
- 45. Chazouilleres O., Beuers U., Bergquist A., et al. EASL Clinical Practice Guidelines on sclerosing cholangitis. J Hepatol. 2022; 77: 761–806. doi: 10.1016/j. jhep.2022.05.011.
- Brindley P.J., Bachini M., Ilyas S.I., et al.
 Cholangiocarcinoma. Nat Rev Dis Primers. 2021; 7(1): 65.
 doi: 10.1038/s41572-021-00300-2.
- Lee H.E., Zhang L. Immunoglobulin G4-related hepatobiliary disease. Semin Diagn Pathol. 2019; 36: 423–433. doi: 10.1053/j.semdp.2019.07.007.
- 48. Kimura Y., Harada K., Nakanuma Y. Pathologic significance of immunoglobulin G4-positive plasma cells in extrahepatic cholangiocarcinoma. Hum Pathol. 2012; 43: 2149–2156. doi: 10.1016/j.humpath.2012.03.001.
- 49. Tokala A., Khalili K., Menezes R., et al. Comparative MRI analysis of morphologic patterns of bile duct disease in IgG4-related systemic disease versus primary sclerosing cholangitis. American Journal of Roentgenology. 2014; 202: 536–543. doi: 10.2214/AJR.12.10360.
- Naitoh I., Nakazawa T., Ohara H., et al. Endoscopic transpapillary intraductal ultrasonography and biopsy in the diagnosis of IgG4-related sclerosing cholangitis. J Gastroenterol. 2009; 44: 1147–1155. doi: 10.1007/s00535-009-0108-9.
- 51. Yata M., Suzuki K., Furuhashi N., et al. Comparison of the multidetector-row computed tomography findings of IgG4-related sclerosing cholangitis and extrahepatic cholangiocarcinoma. Clin Radiol. 2016; 71: 203–210. doi: 10.1016/j.crad.2015.10.024.
- 52. Kim J.H., Byun J.H., Kim S.Y., et al. Sclerosing cholangitis with autoimmune pancreatitis versus primary sclerosing cholangitis: Comparison on endoscopic retrograde cholangiography, MR cholangiography, CT, and MRI. Acta Radiol. 2013; 54: 601–607. doi: 10.1177/0284185113481018.
- 53. de Vries E., Tielbeke F., Hubers L., et al. IgG4/IgG RNA ratio does not accurately discriminate IgG4-related disease from pancreatobiliary cancer. JHEP Reports. 2020; 2(4): 100116. doi: 10.1016/j.jhepr.2020.100116.
- 54. Naitoh I., Nakazawa T., Hayashi K., et al. Comparison of intraductal ultrasonography findings between primary

- sclerosing cholangitis and IgG4-related sclerosing cholangitis. Journal of Gastroenterology and Hepatology (Australia). 2015; 30: 1104–1109. doi: 10.1111/jgh.12894.
- Deshpande V., Zen Y., Chan J.K. C., et al. Consensus statement on the pathology of IgG4-related disease. Modern Pathology. 2012; 25: 1181–1192. doi: 10.1038/modpathol.2012.72.
- 56. Cortazar F.B., Stone J.H. IgG4-related disease and the kidney. Nat Rev Nephrol. 2015; 11: 599–609. doi: 10.1038/nrneph.2015.95.
- 57. Detlefsen S., Klöppel G. IgG4-related disease: with emphasis on the biopsy diagnosis of autoimmune pancreatitis and sclerosing cholangitis. Virchows Archiv. 2018; 472: 545–556. doi: 10.1007/s00428-017-2275-z.
- Naitoh I., Zen Y., Nakazawa T., et al. Small bile duct involvement in IgG4-related sclerosing cholangitis: Liver biopsy and cholangiography correlation. J Gastroenterol. 2011; 46: 269–276. doi: 10.1007/s00535-010-0319-0.
- Kawakami H., Zen Y., Kuwatani M., et al. IgG4-related sclerosing cholangitis and autoimmune pancreatitis: Histological assessment of biopsies from Vater's ampulla and the bile duct. Journal of Gastroenterology and Hepatology (Australia). 2010; 25: 1648–1655. doi: 10.1111/j.1440-1746.2010.06346.x.
- 60. Wu Q., Chang J., Chen H., et al. Efficacy between high and medium doses of glucocorticoid therapy in remission induction of IgG4-related diseases: a preliminary randomized controlled trial. Int J Rheum Dis. 2017; 20: 639–646. doi: 10.1111/1756-185X.13088.
- 61. Inoue D., Yoshida K., Yoneda N., et al. IgG4-related disease: Dataset of 235 consecutive patients.

 Medicine (United States). 2015; 94(15): e680.

 doi: 10.1097/MD.0000000000000680.
- 62. Kubota K., Kamisawa T., Nakazawa T., et al. Reducing relapse through maintenance steroid treatment can decrease the cancer risk in patients with IgG4-sclerosing cholangitis: Based on a Japanese nationwide study. Journal of Gastroenterology and Hepatology (Australia) 2023; 38: 556–564. doi: 10.1111/jgh.16066.
- 63. Fernández-Codina A., Orozco-Gálvez O., Martínez-Valle F. Therapeutic Options in IgG4-Related Disease. Curr Treatm Opt Rheumatol. 2020; 6: 191–204. doi: 10.1007/s40674-020-00147-w.
- 64. Yunyun F., Yu C., Panpan Z., et al. Efficacy of Cyclophosphamide treatment for immunoglobulin G4related disease with addition of glucocorticoids. Sci Rep. 2017; 7(1): 6195. doi: 10.1038/s41598-017-06520-5.
- 65. Yunyun F., Yu P., Panpan Z., et al. Efficacy and safety of low dose Mycophenolate mofetil treatment for

- immunoglobulin G4-related disease: A randomized clinical trial. Rheumatology (United Kingdom). 2019; 58: 52–60. doi: 10.1093/rheumatology/key227.
- 66. Luo X., Peng Y., Zhang P., et al. Comparison of the Effects of Cyclophosphamide and Mycophenolate Mofetil Treatment Against Immunoglobulin G4-Related Disease: A Retrospective Cohort Study. Front Med (Lausanne). 2020; 7: 253. doi: 10.3389/fmed.2020.00253.
- Lanzillotta M., Della-Torre E., Wallace Z.S., et al. Efficacy and safety of rituximab for IgG4-related pancreatobiliary disease: A systematic review and meta-analysis. Pancreatology. 2021; 21: 1395–13401. doi: 10.1016/j. pan.2021.06.009.
- Patel U., Saxena A., Patel D., et al. Therapeutic Uses of Rituximab and Clinical Features in Immunoglobulin G4-Related Disease: A Systematic Review. Cureus. 2023;15(9):e45044. doi: 10.7759/cureus.45044.
- Miyazawa M., Takatori H., Kawaguchi K., et al.
 Management of biliary stricture in patients with IgG4-related sclerosing cholangitis. PLoS One. 2020;15(4), e0232089 15. doi: 0.1371/journal.pone.0232089.

- 70. Kuraishi Y., Muraki T., Ashihara N., et al. Validity and safety of endoscopic biliary stenting for biliary stricture associated with IgG4-related pancreatobiliary disease during steroid therapy. Endosc Int Open. 2019;07:E1410–418. doi: 10.1055/a-0966-8494.
- 71. Brito-Zerón P., Kostov B., Bosch X., et al. Therapeutic approach to IgG4-related disease. Medicine (United States). 2016;95(26),e4002. doi: 10.1097/MD.00000000000004002.
- Ali A.H., Bi Y., Machicado J.D., et al. The long-term outcomes of patients with immunoglobulin G4-related sclerosing cholangitis: the Mayo Clinic experience. J Gastroenterol. 2020;55:1087–1097. doi: 10.1007/s00535-020-01714-7.
- Zen Y., Nakanuma Y., Portmann B. Immunoglobulin G4related sclerosing cholangitis: Pathologic features and histologic mimics. Semin Diagn Pathol. 2012;29:205–211. doi: 10.1053/j.semdp.2012.07.005
- 74. Stathopoulos G., Nourmand A.D., Blackstone M., et al. Rapidly progressive sclerosing cholangitis following surgical treatment of pancreatic pseudotumor. J Clin Gastroenterol. 1995;21(2):143-148. doi: 10.1097/00004836-199509000-00016.