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Yu4nTblBasA NOBCEMECTHO MPOrPECCUPYIOLMIA XapaKTep U He6AaronpuATHbIN MPOrHO3, UHTEpPCTULMabHbIe 3a6oneBaHus nerkux (M13/1), ocobeHHo
TaKue 4acTo BCTPEYAIOWMEecs BapUaHTbI, KaK MAMOMATUYECKUI NeroyuHbiii ¢prnbpos (M1P) u runepceHcMTuBHbIA nHesMoHWT (IT1), onpaBaaHHoO
MPUB/AEKAIOT 3HAUYUTE/IbHOE BHUMaHME KAMHULMCTOB M Y4YeHbIX MO BCeMy MUPY. B mocneaHue rogpl Bce 60/bllyto aKTyasbHOCTb NpuobpeTaeT
HeO6X0ANMOCTb Yr1y61eHHOrO U3yUYeHUs KAMHUYECKMX U MaToreHeTUYecKnx ocobeHHocTel M3J1, coBeplueHCTBOBaHME CYLLECTBYIOWMX U pas-
paboTKa HOBbIX 3G PEKTUBHBIX NEPCOHANN3NPOBAHHBIX NOAXOA0B TaKTUKUN BeJeHWUs 3TO KaTeropumn NaLMeHTOB, Ha OCHOBE Hanbo/ee nepcrek-
TUBHbIX MULLEHEI BO3AeNCTBUSA, CPeAn KOTOPbIX BCe 60/1ee aKTUBHO paccMaTpUBAOTCA reHeTUYECKUE U SMUreHeTUYecKMe BapuaHTbl. ABTopaMu
npoBe/eH HappaTMBHbIiA, ONUcaTe bHbI 0630p IMTEpaTypbl, HanpaB/AeHHbI Ha CUCTEMATU3ALMIO AaHHBIX 06 OCHOBHbIX M3BECTHbIX FEHETUYECKUX
U 3MUreHeTUYECKUX MexaHU3Max, BOB/IeYEHHbIX B NaToreHes 1 GpopMmpoBaHMe crieludUIecKnX KAMHUYECKUX npossaeHunii UI® u M. Otgens-
HO BblAe/IeHbl MyTaLMK B reHax, KOAUPYIOLWMX TesloMepasbl, CUHTe3 $aKkTopoB GpubporeHesa, NONMMOPOU3MbI FEHOB MyLIMHA, CypdaKTaHTa fer-
KMX, OCHOBHblE SMMUreHeTUYECKNE U3MEHEHUS, BOB/IEYEHHbIe B MpoLecchl pubporeHesa. MpoaHanm3npoBaHbl NePCreKTUBbI FTeHETUYECKUX U 3MU-
reHeTUYeCKUX UCCACA0BaHUIA ANA HOBbIX (papMaKONOrMYECKMUX MOAXOL0B U MOHUTOPUHIa 3bdeKTa yKe JOCTYMHbIX METOA0B AeyeHus. Monck
INTEpaTYPHbIX UCTOYHUKOB NPOBOAWACA Mo 6a3aM gaHHbix Scopus, Web of Science, MedLine, The Cochrane Library, EMBASE, Global Health,
CyberLeninka 1 PVHL, no Kato4eBbiM C10BaM, «MHTEPCTULMA/bHbIE 3a601€BaHUsA NIETKUX», «UAMOMNATUYECKUI 1erOY4HbIN GUEPO3», «rUNepceH-
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CUTUBHBIV MHEBMOHWUT», «CEMEMNHBIN NeroyHbii GpUBPO3», «reHeTUYECKUI», «IMUreHeTUYECKUIN», «NPELM3NOHHAA ANArHOCTUKa», «Tepanua»
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Abstract

Given their ubiquitous progressive nature and unfavorable prognosis, interstitial lung diseases (ILD), especially such common variants as idiopathic
pulmonary fibrosis (IPF) and hypersensitivity pneumonitis (HP), rightly attract considerable attention from clinicians and scientists worldwide.
In recent years, the need for an in-depth study of the clinical and pathogenetic features of ILD, improvement of existing approaches and development
of effective personalized approaches to the management of this category of patients, based on the most promising targets of action, among which
genetic and epigenetic variants are increasingly being considered, has become increasingly important. The authors conducted a non-systematic,
descriptive review of the literature aimed at systematizing data on the main known genetic and epigenetic mechanisms involved in the pathogenesis and
formation of specific clinical manifestations of IPF and HP. Mutations in genes encoding telomerase, synthesis of fibrogenesis factors, polymorphisms
of mucin genes, lung surfactant are highlighted separately, and the main epigenetic changes involved in fibrogenesis processes are highlighted
separately. Prospects of genetic and epigenetic studies for new pharmacological approaches and monitoring the effect of already available treatment
methods are analyzed. The search for literature sources was conducted in the Scopus, Web of Science, MedLine, The Cochrane Library, EMBASE,

n o

Global Health, CyberLeninka, and RSCI databases by the keywords “interstitial lung diseases”, “idiopathic pulmonary fibrosis”, “hypersensitivity
pneumonitis”, “familial pulmonary fibrosis”, “genetic”, “epigenetic”, “precision diagnostics”, “therapy"” with a search depth of 20 years.
Key words: interstitial lung diseases, idiopathic pulmonary fibrosis, hypersensitivity pneumonitis, familial pulmonary fibrosis, genetic, epigenetic,

MUCS5B, TERT, telomeres, surfactant, therapy
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HSP — hypersensitive pneumonitis, CD — Christian’s disease, DIP — desquamative interstitial pneumonia, ILD — interstitial lung disease, IIP — idiopathic
interstitial pneumonia, IPF — idiopathic pulmonary fibrosis, COP — cryptogenic organizing pneumonia, LAM — lymphangioleiomyomatosis, LIP —
lymphocytic interstitial pneumonia, PF — pulmonary fibrosis, NIP — non-specific interstitial pneumonia, AIP — acute interstitial pneumonia, RB —
respiratory bronchitis, ILD RB — interstitial lung disease-associated respiratory bronchitis, SCTD — systemic connective tissue diseases, FPF — family
history of idiopathic pulmonary fibrosisa, TNF-a — tumour necrosis factor alpha, FNIP - fibrous non-specific interstitial pneumonia, AE2 — alveolar
epithelium type II cells, ECM - extracellular matrix, EMT — epithelial-mesenchymal transition, FGFR — fibroblast growth factor, GWAS — genome-wide
association study, HAT — histone acetyltransferase, HDAC — histone deacetylase, HDACi — histone deacetylase inhibitors, HDM — histone demethylase,
HLA — major histocompatibility complex, HMT — histone methyltransferase, IL — interleukin, NGS — next generation sequencing, PDGFR — platelet
growth factor, siRNA — small interfering RNA, SNP - single nucleotide polymorphism, SP — surfactant protein, SP-A — surfactant protein A, SP-D —
surfactant protein D, TGF-p — tumour growth factor beta, TLR — Toll-like receptor, VEGFR - vascular endothelial growth factor
Qo

Introduction pulmonary interstitial tissue and alveoli, which some-

Currently, the term “interstitial lung disease” (ILD)  times manifest as altered pulmonary pattern and irre-
combines a heterogeneous group of pulmonary diseases  versible fibrosis. To date, over 200 clinical entities of ILD
associated with non-infectious infiltrates, mostly in  are known, which account for over 15 % of all pulmonary
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pathologies [2]. Morphologically, interstitial pulmonary
fibrosis is associated with progressive replacement of
pulmonary tissue with fibrous scar tissue due to excessive
release of collagen by mesenchymal cells, myofibroblasts.
Over time, this process alters the architecture and func-
tion of the organ, which, together with the associated
autoimmune inflammation in the lung interstitial tissue,
promotes development of marked respiratory distress,
which gradually progresses along with the spread of the
inflammatory process and aggravation of fibrous changes
in the lungs [2], causing a number of unfavourable clini-
cal and prognostic effects [8]. The course and outcome
of the disease significantly depend on the specific clini-
cal entity of ILD; therefore, early disease verification and
forecasting the course of the disease are crucial (Fig. 1).
There is currently a group of ILDs with known causes,
which includes HSP associated with exposure to various
organic (mould spores, particulate bird droppings, non-
tuberculous mycobacteria, etc.) and non-organic sub-
stances (silicone dioxide, asbestos, coal mine dust, beryl-
lium and solid metals), as well as a number of medicinal

products. Also, this group includes ILDs caused by sys-
temic autoimmune rheumatic disorders [8, 42]. A new
classification of chronic HSP proposes to separate non-
fibrous and fibrous variants. In terms of clinical, func-
tional and visual properties, the latter can be non-pro-
gressive or progressive [3]. There are reports of ILDs with
progressive drug-induced fibrosis, for instance, caused
by amiodarone [8], and also in patients with rheumatoid
arthritis and systemic scleroderma [41]. Among ILDs
with unknown origin, or idiopathic interstitial pneumo-
nias (IIP), there is a subgroup of diseases with chronic
fibrous X-ray morphologic pattern, which includes usual
interstitial pneumonia (UIP) and fibrous non-specific
interstitial pneumonia (FNIP). An excellent example of
an ILD with X-ray morphologic pattern of UIP is IPF,
which is progressive in 100% of cases. For reference,
ENIP is progressive only in 65% of cases. The majority
of IIPs are sporadic; however, according to the contem-
porary view, genetic susceptibility can have a significant
role not only in manifestation, but also in the variant of
ILD course [3, 8, 42].

Interstitial lung diseases (ILD)

l
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(SCTD, drug and et al.)
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Other ILD
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Granulomatous ILD
(sarcoidosis and et al.)

Other IIP
(not IPF)

DIP

AIP

NIP

RB-ILD

H

cop
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Figure 1. Classification of ILD

Note. ILD — interstitial lung diseases, IPF — idiopathic pulmonary fibrosis, IIP — idiopathic interstitial pneumonia DIP — desquamative interstitial pneumonia, RB-ILD —
respiratory bronchitis associated with interstitial lung disease, AIP- acute interstitial pneumonia, COP — cryptogenic organizing pneumonia, NIP — non-specific interstitial
pneumonia, LIP — lymphoid interstitial pneumonia, SCTD — systemic connective tissue diseases, LAM — lymphangioleiomyomatosis, GCX — histiocytosis X
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Given the commonly progressive nature and unfa-
vourable prognosis, ILD rightfully draws the attention of
scientists and clinicians all over the world. The incidence
of ILD varies between 0.63 and 7.6 per 100,000 people in
the USA and Europe [45, 47], with a significant rise in the
numbers with population ageing. A recent study of the
global disease burden demonstrated that the ILD share
in the increase in all-cause deaths in 2017 was 0.26 %,
while the number of ILD-associated loss of years of life
rose by 86 % over the past two decades [14]. According
to the WHO, pre-COVID-19 social losses from ILD were
comparable with losses from lung cancer [10].

Given the high rates of disablement and deaths in
individuals of employable age resulting from ILD pro-
gression and development of irreversible pulmonary
fibrosis, where health protection is of utmost impor-
tance because of existing demographical fluctuations in
the Russian Federation, recently the need in deep stud-
ies of the clinical and pathogenetic features of ILD, as
well as improvements of the existing and development of
efficient approaches to manage this category of patients
have become of immediate interest [4, 44]. Nevertheless,
despite a number of achievements in the understanding
of the pathogenetic mechanisms of the disease, the origin
of diseases in this group is understudied, irrespective of
the obvious understanding of its complexity and a com-
bination of effects from genetic and epigenetic factors.

Modern idea of
the pathogenesis of ILDs

Scientists and clinicians have been actively discuss-
ing the role of genetic susceptibility [53], environmen-
tal factors [58] and changes related to fast ageing [22]
in the development of IPF and HSP, the combination of
which results in a complex epigenetic re-programming,
promoting aberrant activation of epithelial cells. When
activated, epithelial cells release a lot of mediators, which
promote migration, proliferation and activation of fibro-
blasts and myofibroblasts. These cells are resistant to
apoptotic mechanisms and continue releasing extracel-
lular matrix components [36]. Extracellular matrix holds
a number of growth factors involved in the upregulation
mechanisms and acting as components of cross signal
pathways, which also adds to steady remodelling of lung
tissue and fibrosis progression [36].

A pathologic result is replacement of the normal elas-
tic extracellular matrix of the lungs with modified matrix
rich in fibrillar collagen [61].

Overall, heterogeneous genetic variants can promote
development of altered bronchopulmonary tissue, which

becomes more susceptible to recurring microdamages
under the influence of various potential environmental
factors.

This objective of this review is to analyse the results
of the modern genetic and epigenetic studies in patients
with IPF and HSP, which makes it possible to identify
the potential targets for interventions in the course and
outcomes in patients with ILDs, most commonly dealt
with by a pulmonologist, such as IPF and HSP.

Genetic factors of IPF
and HSP development

To date, patients with IPF underwent three genome-
wide association studies (GWAS), which identified single
nucleotide polymorphisms (SNP) in several loci, associ-
ated with predisposition to IPF [19, 38]. These variants
included mutations in gene MUC5B [35, 48, 54]; in genes
related to the innate immunity functioning (TOLLIP,
TLR3, ILIRN, IL8, TGFBI) [22, 40] and barrier function
of epithelial tissue (DSB, DPP9) [4, 22], as well as in genes
maintaining telomere integrity (TERT, TERC, OBFCI,
TINF2, DKC1, RTEL1, PARN) [6, 13, 29, 31, 57], surfac-
tant production (SFTPC, SFTPA2, ABCA3) [23, 38] and
cell cycle regulation (KIF15, MADIL1, CDKNIA) [7, 42]
(Fig. 2).

For example, SNP rs35705950 in the promoter
region of mucin gene 5B (MUCS5B) was first identified
back in 2011 during a genome-wide association study
and is associated with a 7-fold increase in the risk of
IPF [37]. After 2011, this SNP in gene MUC5B was
verified in numerous independent studies and is still
the most significant risk factor associated with devel-
opment of IPF [23, 43, 48, 54]. Also, several authors
reported a paradoxical advantage in the survival rates
of patients with IPF, who are heterozygous carriers of a
minor allele of this gene, as compared to patients who
do not have it [7, 19]. However, other groups of patients
with ILD demonstrated that the same mutation variant
results in poorer survival rates in patients with intersti-
tial pneumonia with autoimmune manifestations and a
trend to poorer survival rates in patients with ILD asso-
ciated with a connective tissue disorder or chronic HSP
[5, 35].

In 2013, the same GWAS identified SNP of two other
genes associated with cell-cell adhesion — DSP (desmo-
plakin) and DPP9 (dipeptidyl peptidase 9), associated
with IPF [19]. It has been demonstrated that mutations,
which cause loss of function in other desmosome genes,
including DSG1, boost production of proinflammatory
cytokines and promote phagocyte attraction [22, 37].
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Figure 2.
Key profibrotic mechanisms secondary to mutations or polymorphisms in the genes of telomerase, surfactant proteins,

mucin 5B.

Note. Mutations in TERT, TERC, PARN and RTELI reduce telomerase activity, which leads to increased telomere shortening. SFTPC, SFTPA1, SFTPA2, ABCA3 are involved in the
modulation and stabilization of alveolar surfactant tension; when altered, they can cause increased endoplasmic reticulum stress, which ultimately leads to epithelial-mesenchymal
transitions and apoptosis of type II alveolocytes. Polymorphisms in the MUC5B gene are responsible for mucociliary dysfunction with impaired clearance and increased mucus

production, predisposing to bacterial overgrowth and infection [63, modified]).

Cytokines, produced both by damaged epithelial cells
and activated alveolar cells, including such cytokines as
IL-1f, IL-6 and IL-8, facilitate this cyclic damage process
[38]. As a result, the epithelial layer of alveoli loses its
barrier function, both due to genetic predisposition and
stronger inflammatory signals.

Some authors also demonstrated that IPF is associated
with impaired regulation of signalling of auto-inflam-
matory Toll-like receptors as a link between innate and
adaptive immune response [23, 38]. Ten functional TLRs
have been identified, which have distinct receptor/ligand

associations, at the same time they are localised either
on the cell membrane (TLR1, 2, 4, 5, 6) or in endosomal
compartments (TLR3, 7, 8, 9) in order to recognise vari-
ous extracellular and endocellular signals, respectively
[42]. Genetic risk variants, which impact signalling of
TLR family related to IPF, are presented below (Fig. 3).
In 2013, GWAS identified three more common SNPs
(rs111521887, rs5743894, rs574389) of the protein gene
interacting with Toll-like receptors (TOLLIP), which
were associated with a high risk of IPF, and one of them
(rs5743894) was also associated with high mortality rates
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in patients with this disease [19]. TOLLIP is known to
be expressed mostly by alveolar macrophages and epi-
thelial cells. Each of the identified SNPs was associated
with 20-50% reduction in TOLLIP mRNA expression
[19]. Since TOLLIP and MUC5B are related genes in
chromosome 11p15.5 region, there are conflicting data
whether their variants are in linkage disequilibrium or
ensure independent associations to bring about the risk
of IPF [18, 35, 43, 48]. Nevertheless, their expression in
epithelial cells is higher in IPF, which is probably a result
of long-term exposure to pathogens [16, 24, 25, 39, 40,
43, 52].

An integral part of the normal human lung function
and prevention of alveolar collapse during respiration is
surfactant protein (SP). It is a well-known fact that sur-
factant protein is a phospholipid-rich substrate, which
is produced by distal parts of the airways, alveolocytes.
Approximately 10% of surfactant consists of proteins
produced and released by alveolar epithelium type II
cells (AE2) and terminal secretory cells of the airways

[8, 42]. Fractions of surfactant protein A (SP-A) and
D (SP-D) belong to a specific group of innate immune
proteins called collectin, named after calcium-binding
C-terminal lectin domain, which recognises respective
receptors on pathogen surface [23, 38]. It has been dem-
onstrated that SP-A and SP-D opsonize common bacte-
rial and viral pathogens and promote phagocyte destruc-
tion by innate immune cells, such as macrophages and
neutrophils. Sparse SNP in two adjacent genes encod-
ing SP-A, SFTPAI and SFTPA2 were described in sev-
eral cases of family pulmonary fibrosis [4, 33]. However,
the role of these and other surfactant-associated SNP in
the development of sporadic IPF is still unclear. Several
authors reported that patients with IPF had lower SP-A
concentration in bronchoalveolar lavage compared to
healthy volunteers, and SP-A levels are inversely corre-
late with patient survival rates [7, 38].

Unlike IPF, patients with HSP did not undergo any
large-scale GWAS; however, some studies with target
genotyping showed a number of genes responsible for
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Figure 3. Pro-fibrous transmission of TLR signals [36, changed]
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higher susceptibility to this disease with an unfavourable
outcome. For instance, a test was performed in order
to identify SNP in genes of the major histocompatibil-
ity complex (HLA) [18]. Gene HLA-DRBI1 in patients
with HSP had several SNP associated with carrier status
of specific antigens and production of tumour necrosis
factor alpha (TNF-a) [18].

B. Ley et al. demonstrated that SNP of promoter
MUCS5B associated with predisposition to IPF is found
in a significantly larger number of patients with HSP,
as compared to healthy controls [35]. However, unlike
patients with IPF, the latter was associated with a higher
risk of death in patients with HSP, and the degree of this
association varies in various cohorts.

GWAS identified gene polymorphisms which can
impact the susceptibility to IPE A transcriptome analy-
sis of RNA separated from the lung tissue and peripheral
blood showed expression of genes involved in the patho-
genesis and outcomes of IPF and HSP. These studies
demonstrated that, while patients with IPF had higher
regulation of genes involved in tissue remodelling, apop-
tosis and fibroblast signalling, patients with HSP had
higher regulation of genes, which are important for the
immune function, including genes transmitting T-cell
signals and other which are associated with the major
histocompatibility complex functioning [38].

Further transcriptome studies of lung and peripheral
blood samples of patients with IPF confirmed the role
of genes involved in the alveolar epithelium damage and
remodelling, i.e. pathogenesis of IPF [23].

As for additional criteria to differentiate IPF and
ILDs for the development of a tool to genomically fore-
cast survival rates in patients based on peripheral blood
data, transcriptome analysis was used. By using a two-
stage multicenter approach to identification and valida-
tion, J.D. Herazo-Maya et al. identified a gene signature
consisting of 52 differentially expressed genes, which is
able to efficiently classify patients with a high or low risk
of death during the 4-year follow-up period. This gene
signature had test efficiency characteristics similar to
those of the validated model of clinical forecasting [23]
and significantly improved the existing clinical model.
Then these researchers verified the 52-gene signature
at six sites across the USA and Europe. It was demon-
strated that antifibrotic therapy initiation was associated
with favourable gene signature modulation. The major-
ity of differentially expressed genes, which were identi-
fied using this approach, are essential for immunologi-
cal enhancement. It is assumed that impaired immune
response regulation can greatly contribute to IPF pro-
gression [50].

Studies of large families with several affected family
members allowed identifying a number of genes associ-
ated with monogenetic forms of family idiopathic pul-
monary fibrosis (FPF) and improved our understanding
of the genetic basis of this ILD. Currently, there are seven
known genes associated with telomeres, which were
involved in the development of FPF in adults (TERT,
TERC, RTELI1, PARN, NAFI, TINF2, DKCI) [15, 33, 42,
59]. Pathogenic variants of genes related to telomeres are
associated with extremely short age-adjusted length and
predispose to multisystem organ dysfunction, including
PF, hepatic dysfunction and bone marrow failure [50].

Pathogenic variants related to telomeres were found
in approximately 30 % of all family members with FPF,
and TERT is the most frequently affected gene, which
accounts for up to 20 % of FPF cases [40, 50]. Inheritance
of a pathogenic variant related to telomeres results in a
considerable risk of ILD; however, other factors, such as
age, sex, environmental conditions and telomere length,
also contribute to penetration variability [35, 58, 59]. At
the same time, correlation between genotype and ILD
phenotype in patients with pathogenic telomere-asso-
ciated variants is weak. Despite the fact that IRF is the
most common clinical diagnosis in relatives with FPF, it
accounts for less than a half of all cases. The other part
includes ILD both with known (HSP and ILD associated
with connective tissue disorders) and unknown origin
(idiopathic non-specific interstitial pneumonia and idio-
pathic pleuroparenchymal fibroelastosis). Interesting to
note that the presence of a rare telomere-associated vari-
ant in TERT, TERC, PARN or RTEL1 was associated with
rapid disease progression and low survival rates irre-
spective of the diagnosis [59]. This observation allows
assuming that the presence of a pathogenic variant in the
telomere-associated gene prevails over the clinical mani-
festation of the disease, including ILD variant and over-
all prognosis. The accumulated data show that telomere
dysfunction not only predisposes to disease manifesta-
tion, but it can also impact the rate of disease progression
and the intrazonal nature of fibrosis [15, 59].

Epigenetic effects
in IPF and HSP

No doubt that genetic predisposition alone is not
sufficient for PF development, and the group of ILDs
cannot be characterised without assessment of epigen-
etic effects. Gene expression is controlled by a number of
epigenetic mechanisms, which coordinate activation and
suppression of gene transcription (Fig. 4). Epigenetics
impacts gene expression modulation irrespective of
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DNA sequence. Currently, epigenetic modifications can
be grouped into three types: DNA methylation in CpG
sites, posttranslational modifications of histones and
non-coding RNA. A number of studies demonstrated
that several genes are differentially expressed in the
lungs of ILD patients; this concerns mostly endocellular
signal pathways of tumour growth factor beta (TGF-p),
epithelial-mesenchymal transition, fibroblast prolifera-
tion [28, 55, 62].

The use of TGF-f3, the main factor promoting ILD
development, increases DNMT1 and DNMT3a levels
in pulmonary fibroblasts without changing their mRNA
expression, using various posttranscriptional mecha-
nisms [31]. Upon interaction with TGF-f1, DNMT3a
production increases due to increased protein synthe-
sis and translation. To the contrary, TGF-P1 inactivates
glycogen synthase kinase-3f, which causes inhibition of
DNMT1 ubiquitination and its proteosomal degrada-
tion in pulmonary fibroblasts. The data from the study
demonstrate the significant role of DNA methylation
in the pathogenesis of ILDs. The most common histone
modifications include methylation and acetylation. His-
tone methylation is regulated by dynamical interaction
between two sets of enzymes: histone methyltransferases
(HMT) and histone demethylases (HDM). Signature of
histone acetylation in a cell plays a role in chromatin
structure modulation and gene expression. This dynamic
process is regulated by a balance between histone acet-
yltransferase (HATs) and histone deacetylase (HDAC)
activity. Among HATSs, the most well-studied protein is
p300, which is associated with transcriptional activation
of numerous genes in response to cell signalling. It has

been demonstrated that increased p300 activity and
expression are associated with various diseases, includ-
ing PF [49] and acute respiratory distress syndrome [12].
Also, it has been shown that genetic deficit and pharma-
cological inhibition of p300 eliminate pulmonary fibro-
sis both in vitro and in vivo [9]. The role of non-coding
RNAs in the pathogenesis of ILD is well-recognised.
MicroRNAs are associated with almost all stages of ILD
pathogenesis. For instance, let-7d, miR-200, miR-26a
and miR-375 are associated with lung epithelium repa-
ration, epithelial to mesenchymal transition (EMT);
miR-21, miR-155, miR-26a, miR-27a-3p, miR-9-5p are
associated with fibroblast activation and their trans-
differentiation to myofibroblasts; and miR-320a is asso-
ciated with AECII cell ageing and collagen production
regulation. Currently available data confirm the dual
pathogenetic role of microRNA and involvement both
in fibrotic and antifibrotic processes in ILD [9]. Numer-
ous environmental factors, such as behavioural patterns,
patient’s diet, and drugs taken (widely defined as expo-
some), ageing factors, which are currently evaluated on
the molecular level, can cause epigenetic modifications,
thus impacting gene expression.

All biological characteristics of pulmonary fibrosis
can be explained by impaired gene expression regula-
tion associated with epigenetic modifications. Given that
epigenetic modifications are dynamic, they are an attrac-
tive therapy target, because epigenetic markers can be
reversed using specific therapies, e.g., histone deacety-
lase inhibitors (HDACI) [11].

Moreover, individual episignatures actually become
disease-specific, and epigenetic profile can be used to
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verify clinical diagnosis. Identification of altered meth-
ylation, caused by disease progression, is particularly
important for pathologies closely related to environmen-
tal exposure, like in IPE. Epidemiological studies dem-
onstrated the relationship between exposure to inhaled
environmental agents and IPF development, which is
true for cigarette smoke, chip dust, metallic dust, silica
particles, textile dust, and possibly pollutants found in
agricultural, farming and cattle-breeding areas [17, 60,
63]. Cigarette smoke is the highest risk factor of disease
development, allowing to assume that it has a significant
epigenetic effect, especially in cases of genetic predispo-
sition to the disease [57, 63]. Studies of genome methyla-
tion in IPF are ongoing; they aim at identification of spe-
cific modified methylation models, which can shed light
on the role of environmental impact and pathogenetic
mechanisms underlying PF development. Epigenetic sig-
natures can be potential biomarkers for clinical diagnosis
verification, identification of new drug therapies in order
to reverse epigenetic changes and monitoring effects of
available therapies.

Modern approaches to ILD
therapy, taking into account
possible effects of genetic
factors

A recent study, which was based on the next gen-
eration sequencing (NGS) results and bioinformatic
approaches, described some genetic and epigenetic path-
ways, which can be affected by an antifibrotic agent nint-
edanib [56].

Nintedanib is a tyrosine kinase inhibitor, which pos-
sesses antifibrotic properties due to the impact and inter-
ference with fibroblast growth factor receptor (FGFR),
platelet-derived growth factor receptor (PDGFR), vas-
cular endothelial growth factor receptor (VEGFR), and
potential inhibition of TGF-p signalling for ECM sup-
pression [61]. It is worth noting that, following ninte-
danib therapy, authors identified four genes with reduced
expression and one gene with increased expression,
which impact the following microRNA/mRNA interac-
tions: E2F1, NPTX1, DDX11, PLXNA4 (reduced expres-
sion) and SLC25A23 (increased expression).

The presence of relatively rare variants of telomere-
associated single nucleotide polymorphisms or short
telomeres promote faster disease progression both in IPF
and HSP patients; however, currently there are no suf-
ficient data on the eflicacy of specific therapies.

Another remarkable recent study evaluated the
efficacy and safety of nintedanib and pirfenidone in a

cohort of PF patients with telomerase gene mutations.
The authors found that both antifibrotic therapies were
associated with less reduced forced vital capacity with-
out any unexpected side effects [27]. However, the cur-
rent strategy of immunosuppressive agent use varies
depending on the type of lung involvement; for instance,
immunosuppressive agents are often prescribed to
patients with progressive HSP, while it is not indicated in
patients with IPF [30]. The safety and efficacy of immu-
nosupression in patients with short telomerases were
not tested systematically. Small samples of patients with
rare TERT and TERC variants allowed assuming that
immunosuppressure therapy after lung transplantation
due to ILD can be associated with a high rate of side
effects, including bone marrow failure, hepatic toxicity
and infections [15]. It brings about the question of safety
and tolerability of this therapeutic strategy for patients
with short telomeres in a wide range of ILDs. Antifibrotic
agents, including pirfenidone and nintedanib, are effec-
tive in slowing down pulmonary function impairment
in patients with IPF [30]. Pirfenidone was well tolerated
by a small group of TERT carriers, but larger studies are
required to identify its efficacy in patients with IPF with
telomere dysfunction. One study demonstrated that pir-
fenidone can slow down the rate of EMT progression
by modulating several gene-induced profibrotic path-
ways [34]. Pirfenidone can suppress enzymes involved
in EMT, such as SULF2, and boost the activity of anti-
fibrotic genes, such as Gremlin 2 (GREM2), which then
cause restoration of the damaged alveolar epithelium
via fibroblast growth factor-10, thus preventing fibrosis.
Moreover, the levels of EDN1 and 5-HTR2B, two profi-
brotic genes, which are associated with collagen depos-
its and fibroblast proliferation, drop under the effect of
pirfenidone.

Since the available medicinal products cannot cure
IPE, several studies sought to use gene therapy as a
potential strategy in attenuation of a wide array of pro-
cesses involved in fibrosis. Despite the possible advan-
tages of gene therapy, no studies for the treatment of
IPF have been conducted to date. Development of new
medicinal products for treatment of IPF is really chal-
lenging because of the complex pathogenesis of the dis-
ease and sophisticated disease modelling in animals.
The currently available animal models are not specific to
IPE, they just reproduce some aspects of PE, artificially
caused by various chemicals (e.g., bleomycin, FTIC and
lipopolyssacharide). Early studies to evaluate the poten-
tial use of gene therapy in IPF patients were focused on
induction of the targeted gene overexpression using both
nanoparticles and viral vectors [46, 64]. This approach
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was mainly aimed at inflammatory pathways, including
TGF-p and FGF7 signalling pathways [5, 41].

Most recently, the use of gene suppression with siRNA
(small interfering RNA) for the management of PF was
studied in several studies, which described the efficacy of
some siRNA combined with antifibrotic compounds in
the therapy of several aspects of PF [20]. Very few stud-
ies evaluated the use of miRNA to induce gene expres-
sion suppression in PF patients [64, 65]. These studies
showed that miRNA-based therapy can have huge poten-
tial for simultaneous suppression of several genes asso-
ciated with fibrosis. However, the pleiotropic effects of
miRNA for various gene transcripts (not all of them have
been characterised yet) raise concerns about the safety of
therapeutic use of these ncRNAs.

In general, these studies confirm the applicability
of gene therapy in suppression of fibrosis progression.
However, to date, not a single gene therapy approach
has demonstrated the ability to reverse confirmed
fibrosis.

Future study outlooks

The possibilities of a more thorough study of the
genetic and epigenetic principles of PF are the current
clinical and scientific task, the addressing of which can
help both in diagnostics and gene therapy development
for the management of pulmonary diseases associated
with fibrosis.

It is obvious that the genetic data can significantly
complement the existing algorithms of ILD diagnosis,
acting as a molecular foundation for morphological, clin-
ical and instrumental data. According to the diagnostic
manoeuvre roadmap proposed by experts at the Euro-
pean Respiratory Society (ERS) and Pulmonary Fibro-
sis Foundation [26], the current indications for genetic
testing are: unexplained ILD in childhood; presence of
ILD, first-degree and second-degree family members
with ILD; any patient with a relative, who is a carrier of a
pathogenic/possible pathogenic ILD variant; any patient
with suspected telomere shortness (short telomere syn-
drome includes pulmonary fibrosis, haemotological
disorders and hepatic diseases); any patient with short
telomeres, where telomere length is analysed prior to the
test; any patient with idiopathic fibrotic interstitial lung
disease below 50 years of age.

In addition to the proposed genetic diagnostic road-
map, the European Respiratory Society also considers a
possibility of diagnostic testing to identify predisposition
to ILD in patients with Hermansky-Pudlak syndrome,
because, provided considerable amount of genome data

is interpreted correctly, they will be used for diagnostic
evaluation of risks of the disease and prevention of its
rapid progression and patient incapacitation [32]. At the
moment, there are genetic diagnostic testing approaches,
which are panels including a specific genome set, e.g.,
a test panel Interstitial Lung Disease manufactured by
Blueprint genetics (USA), comprising the following
genes: ABCA3 (16p13.3), CSF2RA (Xp22.33), CSF2RB
(22q12.3), DKCI (Xq28), ELMOD2 (4¢31.1), HPSI
(10924.2), HPS4 (22qi12.1), ITGA3 (17921.33), NFI
(17q11.2), NKX2-1 (14q13.3), PARN (16p13.12), RTELI
(20q13.33), SFTPAI (10422.3), SFTPA2 (10g22.3),
SFTPB (2p11.2), SFTPC (8p21.3), SLC34A2 (4p15.2),
SLC7A7 (14q11.2), SMPDI1 (11p15.4), STAT3 (17921.2),
TERC (3q26.2), TERT (5p15.33), TINF2 (14q12), TSCI
(9934.13), TSC2 (16p13.3) [1]. New data on genetic vari-
ants of predisposition to ILD have been accumulated,
which help to improve and make new genetic diagnostic
panels.

Interference with epigenetic changes contributing to
the development and progression of PF is also an inter-
esting scientific and research perspective for target preci-
sion therapy in this category of patients [9].

Conclusion

The significance of genetic and epigenetic studies
is becoming more and more important for the study
of pathogenesis, identification of disease progression
and prognosis in patients with ILD. A lot of genes and
pathways involved in PF development have been found
as a result of genome-wide studies. A major part of cur-
rently available genome data is associated with patients
with IPE As far as patients with HSP and other forms of
ILD are concerned, very few similar studies have been
conducted. To date, there is no unified standardisation
of diagnostic criteria for ILD variants. Also, it is still
unclear how to classify these groups of patients depend-
ing on the risk of disease progression and death, includ-
ing identification of genetic factors, namely predictors
of unfavourable disease outcome in patients with HSP.
More and more articles study the effects of epigenetic
modifications, which can alter the risk of the disease in
the presence of environmental triggers. Besides, epigen-
etic mechanisms can impact development and prognosis
of PE. DNA methylation in CpG sites, posttranslational
histone modifications and suppression of non-coding
RNA genes are the mechanisms, actively studied in fibro-
genesis to search for potential clinical use as biomarkers
and targets for drug therapy, because epigenetic markers
can be reversed.
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Finally, there are data on molecular pathways both on
genetic and epigenetic levels, which are the foundation
for the efficient antifibrotic therapy.
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