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Резюме
Болезнь Альцгеймера (БА) — глобальное заболевание. Наиболее важным в патогенезе БА является увеличение отложений амилоидного 

белка бета (Aβ) и патологическое скопление тау-белка. В развитии болезни принимае т участие ряд этиологических факторов, таких как 

возраст, генетика, образ жизни, факторы окружающей среды и микрофлора кишечника (МК). Нарушение регуляции МК — один из факторов 

патогенеза БА, который способствует нарушению когнитивной функции, включая скопление Aβ и тау-белка, выработку нейромедиаторов 

и метаболитов, нарушение иммунной регуляции, нейровоспаление, нарушение гематоэнцефалитического барьера, оксидативный стресс 

и синдром раздраженного кишечника. 

Половые различия могут быть важным фактором патогенеза БА. Около 75 % пациентов с БА являются женщинами. Преобладание БА 

у женщин связано с генетикой, структурой и функцией головного мозга, эстрогеном, образом жизни (например, образование, род деятель-

ности, уровень физической активности и продолжительность сна) и случаями инфекционно-воспалительных заболеваний. Поскольку про-

должительность жизни у женщин больше, чем у мужчин, женщины более склонны к БА. 

В настоящей статье рассматривается роль МК и половые различия при БА. В начале статьи приводится краткое описание характеристик микро-

флоры кишечника и половых различий при БА. В работе рассматриваются перспективные терапевтические стратегии при БА, направленные на МК.
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Abstract

Alzheimer’s is a global disease (AD). The most important pathogenesis of AD is the increase in the amyloid-β protein (Aβ) deposition, and abnormal 

phosphorylation aggregation of the microtubule-associated protein tau. Many etiological factors are implicated in the production of AD such as age, 

genetics, lifestyle, environmental factors, and gut microbiota (GM). Dysregulation of GM contributes to AD pathogenesis and cognitive impairment 

via several mechanisms, including Aβ and Tau protein aggregation, production of neurotransmitters and metabolites, immune dysregulation, neuro-

infl ammation, blood-brain barrier disruption, oxidative stress, and leaky gut. 

Sex differences might be an important factor for AD pathogenesis. About 75 % of AD patients are females. The higher prevalence of AD in females 

is due to their genetics, brain structure, and function, estrogen, lifestyle factors (e.g., education, occupation, exercise, and sleep), and incidences of 

infection and infl ammations. Because women live longer than men do, they are more likely to get AD. 

This article discusses the role of the GM and sex differences in AD. It begins with an overview of the gut-microbiota axis and sex differences in AD. 

It discusses promising therapeutic strategies for AD targeting GM.

Key words: Alzheimer’s disease, gut microbiota, sex differences, amyloid-β protein, tau protein



R E V I E W  A R T I C L E S The Russian Archives of Internal Medicine • № 3 • 2025

166 

Conflict of interests
The authors declare no conflict of interests

Sources of funding
The authors declare no funding for this study

Article received on 10.08.2024

Reviewer approved 11.12.2024

Accepted for publication on 10.02.2025

For citation: Abdel-Sater Kh.A. Alzheimer’s Disease: The Impact of Gut Microbiota and Sex Differences on Pathogenesis and Treatment Strategies. 

The Russian Archives of Internal Medicine. 2025; 15(3): 165-177. DOI: 10.20514/2226-6704-2025-15-3-165-177. EDN: ACHXWS

AD  — Alzheimer’s disease, Aβ  — amyloid-β protein, APOE  — apolipoprotein E, GM  — gut microbiota, CNS  — central nervous system, HPA  — 
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synthase kinase, FMT — fecal microbiota transplantation

Introduction
Alzheimer’s disease (AD) is characterized by deterio-

ration in memory, behavior, thinking, ability to perform 

daily activities, judgment, and language. It  has become 

a global health epidemic problem. Th e total estimated 

prevalence is expected to reach 82 million by 2030 and 

210 million by 2050 [1]. Per year, approximately 6 % is 

the rate of death from AD. Th e survival duration from 

the date of AD symptoms is about four years for males 

and six years for females [2]. 

Th ere are many hypotheses for describing the patho-

genesis of AD including amyloid-β protein (Aβ) depo-

sition, abnormal phosphorylation aggregation of the 

microtubule-associated protein tau, accumulation of 

apolipoprotein E (APOE), microglia dysfunction, oxida-

tive stress, neuroinfl ammation, and astrocyte activation 

in the gut [3]. Any infections or traumatic brain injury 

can interfere with central immune homeostasis and 

accelerate the progression of the disease [4].

A complex combination of aging, genetics, lifestyle, 

and environmental factors can cause AD. Th e strongest 

risk factors for AD are at advanced ages [5]. It  aff ects 

50 % of individuals older than 85 %. A  strong and sta-

tistically signifi cant positive genetic correlation has been 

observed between AD and family history [6]. Among the 

environmental factors implicated in AD pathogenesis, 

rapidly growing evidence from animal and human data 

suggests an important role of the gut microbiota (GM) 

in the onset and progression of AD pathology [7]. Addi-

tionally, Tan et al., [8] reported that the increasing AD 

prevalence in recent years was highly correlated with 

unhealthy diets and environmental exposures that aff ect 

the GM composition [9].

Th ere are about 100  trillion commensal microbial 

communities that colonize the human gut and are consti-

tuted by bacteria, fungi, archaea, viruses, and protozoans 

living in symbiotic relationships with our intestines [10]. 

Th e human intestines contain approximately 1000  spe-

cies and 7000 strains of bacteria which constitute the gut 

fl ora [11]. 

The flora of the intestinal tract is not pathogenic 

and has numerous beneficial effects on the body’s phys-

iological functions and nutrition. For example, intes-

tinal flora participates in energy metabolism, reduces 

inflammatory response, stimulates systemic immunity, 

and promotes intestinal motility and nutrient  absorp-

tion [12].

Animal studies have shown that gut fl ora regu-

lates memory and learning [13]. Dysregulation of the 

GM has been associated with abnormal brain protein 

aggregation, infl ammation, immune dysregulation, and 

impaired neuronal and synaptic activity in animal and 

human studies of AD [14]. 

The human GM is influenced by various factors, 

including genetics, race, mode of delivery (vaginal vs. 

cesarean), early dietary intake (breastfeeding vs. for-

mula feeding), age, body mass index, medical condi-

tions, psychological factors, acidic pH of the gut, diet, 

physical activity, stress, lack of sleep and environmental 

factors [15]. 

Sex differences may also be a significant factor in 

addition to these well-known confounding factors. 

The microbiota compositions before and after puberty 

were  different in the male mice, suggesting male sex 

hormones may play an important role in the sex dif-

ferences in GM [16]. When the androgen source was 

removed by castration, the GM of the castrated male 

was similar to that of a female mouse. Also, bilateral 

ovariectomy causes microbial dysbiosis in mice [17] 

and humans [18]. The GM of postmenopausal women 

is more similar to that of men than that of premeno-

pausal women [19]. 

Because there is no treatment for AD, only symptom-

atic measures, all studies aim to clarify the pathogenesis 

of the disease for future prevention of the progressive 

neurodegeneration caused by AD [3]. 

While there have been extensive studies on GM, 

research specifi cally focusing on sex diff erences and GM 

in AD is relatively limited with confl icting results. Th ere-

fore, this review summarizes the current knowledge of 
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the mechanistic role of sex diff erences, GM in the devel-

opment of AD, and potential gut microbiome-targeting 

therapies in managing the disease. 

Understanding the Microbiota 
Gut-Brain axis
The gut-brain axis allows a two-way communi-

cation network between the intestine and the brain, 

including the central nervous system (CNS), auto-

nomic nervous system, enteric nervous system, neu-

roendocrine system, and neuroimmune system [20]. 

It  encompasses several pathways, including the ner-

vous system, endocrine system — hypothalamic-pitu-

itary-adrenal axis (HPA)- and immune system, that 

work together to regulate various physiology, such as 

digestion, immune function, mood, cognition, and 

anxiety [21]. HPA activation leads to a release of corti-

sol which can cause changes in both GM composition 

and cognition [22]. 

The CNS affects intestinal motility, sensory, per-

meability, and secretion. The GM regulates CNS neu-

rons, astrocytes, microglia, and the blood-brain bar-

rier by the production of a variety of neurotransmitters 

and metabolites and regulation of inflammation and 

immune systems [23]. Intestinal flora produces neu-

rotransmitters such as glutamate, gamma amino butyric 

acid (GABA), serotonin (5-HT), acetylcholine, and 

dopamine [24]. While gut dysbiosis produces metabo-

lites such as lipopolysaccharide (LPS), trimethylamine 

N- oxidase (TMAO), short-chain fatty acids (SCFAs) 

(such as butyrate and acetate), amino acids, and bile 

acids. It also produces inflammatory cytokines, directly 

affecting neuro-inflammation or activating peripheral 

immune cells [25]. 

Mechanisms of action of GM 
in driving AD progression 
Gut dysbiosis contributes to AD pathogenesis and 

cognitive impairment via several mechanisms, includ-

ing Aβ and Tau protein aggregation, production of neu-

rotransmitters and metabolites, immune dysregulation, 

neuroinfl ammation, blood-brain barrier disruption, oxi-

dative stress, and leaky gut. 

Aβ and Tau protein aggregation 
It is widely believed that an increase in the produc-

tion of Aβ plaques and Tau protein is the most important 

pathogenesis of AD. Th e imbalance between production 

and clearance of Aβ leads to accumulation of it. Aβ  is 

produced by neurons and secreted into the interstitial 

fl uid of the brain. Th e major clearance system for Aβ and 

tau proteins is the glymphatic system [26]. Tau protein is 

a microtubule protein that has a role in neuronal stabil-

ity. Th ere is a relationship between tau and Aβ. Tau is 

essential for Aβ action and also Aβ is necessary for tau 

hyperphosphorylation [27]. 

Most microorganisms in the human body, including 

bacteria and fungi, secrete functional amyloid [28]. Bac-

terial amyloid protein can cross the blood-brain barrier 

into the blood fl ow to the CNS, deposit in the brain, and 

promote Aβ plaques and tau protein accumulation [29]. 

Furthermore, GM dysbiosis reduces the clearance of Aβ 

by aff ecting the gut mucosal barrier and energy homeo-

stasis [30]. GM-ind uced tau protein aggregation through 

the TMAO formation and activation of the glycogen syn-

thase kinase 3 beta pathway [31]. 

Production 
of Neurotransmitters 
1. Glutamate 
The excitatory neurotransmitter glutamate is 

responsible for memory and learning. It has two recep-

tors: metabotropic and ionotropic. The ionotropic glu-

tamate receptor (NMDA) has a role in the AD [32]. 

Furthermore, the hippocampal NMDA level decreased 

significantly after antibiotic treatment, indicating that 

intest inal flora was involved in the metabolic activity 

of NMDA [33]. 

2. GABA 
Lactobacillus and Bifi dobacterium are components of 

normal intestinal microbiota, which can convert sodium 

glutamate into GABA [34]. Th ere is cognitive and 

memory impairment when the function of the GABA 

system is impaired. GABA also participates in the pro-

liferation of precursor neurons, synaptic formation, and 

inhibition of infl ammation in vivo [35]. 

3. 5-HT 
It is a neurotransmitter produced by the gastrointesti-

nal tract chromaffi  n cells [36]. Candida, Streptococcus, E. 

coli, and Enterococcus indirectly stimulate intestinal cells 

to store and release 5-HT [35]. 

It infl uences mood, memory, and overall bodily func-

tions as a stimulant. Th us, disturbances in 5-HT metabo-

lism coming about because of uneven characteristics in 

the gastrointestinal microbiota may assist the movement 

of neurodegenerative problems [37]. 

4. Acetylcholine
Th e expression and functioning of acetylcholine are 

closely associated with AD [38]. Acetylcholine is a com-

monly occurring metabolite in bacteria, specifi cally in 

Lactobacillus plantarum, Bacillus subtilis, Escherichia 

coli, and Staphylococcus aureus [39]. Nevertheless, ace-

tylcholine is unable to traverse the blood-brain barrier 

(BBB); however, its precursor choline can be transported 

to the brain through a carrier present on the capillary 

endothelial cells. Once in the brain, choline can contrib-

ute to the biosynthesis of acetylcholine [40]. 
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5. Dopamine
Dysregulation of the dopamine system signifi cantly 

contributes to the pathological progre ssion of AD [41]. 

Staphylococcus bacteria residing in the human gut pro-

duce substantial quantities of dopamine via the enzy-

matic activity of aromatic amino acid decarboxylase [42]. 

Th e disruption of the dopamine system due to alterations 

in the GM has the potential to expedite the pathological 

progression of CNS disorders, including AD [37].

Production of Metabolites
As discussed before, GM can produce bioactive 

metabolites. Th ese metabolites can cross the BBB to 

aff ect cognition directly or indirectly through immune, 

neuroendocrine, or vagal mechanisms [25].

1. LPS 
It is the glycolipid formed by the combination of 

lipids and polysaccharides. Contrasted and the age-

matched control bunch, the typical LPS level of the cere-

bral neocortex in old Promotion patients expanded mul-

tiple times. Neuroinfl ammation of AD patients may be 

determined by LPS [43].

LPS causes neuroinfl ammation, microglia activa-

tion, an increase in the permeability of the intestine, and 

changes in BBB [44]. Animal experiments also confi rmed 

that intraperitoneal injection of LPS could increase the 

Aβ protein level in the hippocampus of mice, resulting in 

learning disabilities [45]. 

2. TMAO 
It promotes neuro-infl ammation and the accumula-

tion of Aβ and tau proteins by inducing the imbalance 

of intestinal microorganisms. Additionally, it induces the 

release of proinfl ammatory mediators [46]. 

TMAO causes neurodegeneration by aff ecting fragile 

neurons, brain, and neuronal aging, increases oxidative 

stress damages mitochondrial function [47], and can 

lead to cognitive impairment. Th erefore, anti-TMAO 

preparations can inhibit the course of AD [48]. 

3. SCFAs
SCFAs participate in nerve conduction and regu-

late cognition and behavior. Butyric acid and propionic 

acid can promote tyrosine and tryptophan hydroxylase 

expressions, which are involved in synthesizing dopa-

mine, norepinephrine, and 5-HT [49]. 

4. Amino acid 
Neural function in the AD brain is greatly impacted 

by glutamate metabolism [50]. Th e decrease of Trypto-

phan reduces 5-HT and leads to cognitive decline [51].

Similarly, gut bacteria have an eff ect on tyrosine and 

valine metabolism in the diet. Tyrosine is a precursor of 

the catechol neurotransmitters dopamine, norepineph-

rine, and epinephrine. Th ese tyrosine-dependent neu-

rotransmitters aff ect various central and peripheral func-

tions, which are involved in stress response and working 

memory [52]. Reduced plasma valine concentrations are 

linked to faster cognitive loss, and individuals with AD 

have much lower valine concentrations. On  the other 

hand, as the brain absorbs valine more readily than other 

branched-chain amino acids, higher valine concentra-

tions can lower the risk of AD [53].

5. Bile acid (BA) 
It can also be produced in the brain or transferred 

from the peripheral circulation to the brain via BA trans-

porters via the BBB. BA infl uences cognition, memory, 

and motor skills [54]. Kiriyama and Nochi [55] investi-

gated the relationship between intestinal microbiota, BA 

distribution, and genetic variation in AD etiology. Con-

jugated BA Tauroursodeoxycholic acid (TUDCA) has 

been found in tests to decrease Aβ peptide buildup in the 

hippocampus and frontal cortex, leading to improved 

memory. Th erefore, they have protective eff ects on ner-

vous system diseases [55].

Immune Dysregulation
Activated astrocytes are supportive  cells that aff ect 

neuroinfl ammation in AD and supply nutrients and 

metabolic support for neurons [56]. To remove the accu-

mulated Aβ, astrocytes also release chemokines and 

pro-infl ammatory cytokines. A  positive feedback loop 

is created by the extra Aβ deposition, which encour-

ages astrocyte activation and increases the release of 

pro-infl ammatory cytokines. Massive pro-infl ammatory 

cytokine production can harm microglia, impair their 

capacity to remove toxic Aβ, hinder their capacity to 

repair synapses and cause irreparable brain damage [57]. 

Th e creation of gut-associated lymphoid tissue plays 

a role in priming the innate immune system, and the gut 

microbiota also regulates adaptive local and systemic 

immune responses. Alterations to the gut microbiome 

are associated with increased penetration of peripheral 

T-helper1 immune cells into the BBB, increased microg-

lial activation, Aβ aggregation, and cognitive decline in 

AD mouse models [58]. 

Gut and Neuroinflammation 
AD is characterized by systemic and gut infl amma-

tion. It  is associated with an increase in infl ammatory 

markers such as interleukin1 (IL1), IL6, IL12, and IL18, 

interferon, and tumor necrosis factor leading to neuro-

nal cell death and ultimately Aβ and tau protein deposi-

tion [59].

On the other hand, intestinal fl ora is closely associ-

ated with gut and neuroinfl ammation [60]. Microbiota-

host immune interactions in the gut lead to the release 

of proinfl ammatory mediators, e.g., cytokines such as 

IFN-γ, IL-1β, IL-6, and TNF-α and other infl ammatory 
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mediators, and specifi c antibodies involved in the regu-

lation of brain immunity [61]. Th e increase in gut pro-

infl ammatory is accompanied by enhanced systemic 

infl ammation and neuroinfl ammatory processes [48]. 

In addition, microbial disorders at the intestinal 

level may damage intestinal permeability and induce 

systemic activation of the immune system [46]. Patients 

with AD have markedly higher levels of calprotectin 

in their brains and CSF, a marker of intestinal infl am-

mation. It  implies that intestinal permeability could be 

associated with AD pathogenesis [62]. Gut infl amma-

tion might also have sex diff erences concerning the GM. 

In a mouse model of colitis induced with 2,4,6-trinitro 

benzenesulfonic acid, the males exhibited more severe 

colonic infl ammation [63]. 

Blood-brain barrier disruption
Even in the early stages of AD, disruption of the BBB 

has been preset. Th is disruption is linked to increased 

amyloid pathology because it impairs the clearance of 

Aβ, as well as the loss of pericytes and endothelial tight 

junctions [64]. Aβ and tau aggregation or neuronal death 

may be preceded by BBB changes, according to animal 

studies [65].

On the other hand, gut dysbiosis is associated with 

increased BBB permeability in animal studies which 

improves aft er restoring gut microbial homeostasis [66].

Oxidative stress
Under stressful conditions, reactive oxygen species 

formation increases within mitochondria and increases 

the risk of developing AD. Oxidative stress increases 

tau hyperphosphorylation and Aβ accumulation in AD, 

which leads to the eventual loss of synapses and neu-

rons [67].

Because gut dysbiosis aff ects the CNS’s levels of 

oxidative stress, it may play a role in the development 

of AD. For example, NO conversion from nitrate and 

nitrite by Lactobacillus, E. coli, and Bifi dobacterium 

increases the permeability of the BBB and contributes to 

neurotoxicity in AD [68]. Pathogenic enteric bacteria, 

such as Salmonella and E. coli, may cause the stomach 

to produce hydrogen sulfi de, which lowers mitochon-

drial oxygen consumption and increases the expression 

of pro-infl ammatory cytokines [69]. Th e primary source 

of hydrogen, a highly diff usible bioactive gas, is anaero-

bic cocci which are members of the Enterobacteriaceae 

family. Reduced hydrogen synthesis and restricted gas 

availability to CNS neurons may result from gut dysbio-

sis [70].

Leaky gut
Th e condition known as infl ammation is linked to 

the breakdown of the intestinal epithelial barrier, which 

makes it easier for endotoxins, infl ammatory cells, and 

germs to enter the bloodstream [71]. While certain gut 

species such as Lactobacillus plantarum, Escherichia coli 

Nissle, and Bifi dobacterium infantis enhance the expres-

sion of tight junction proteins, others such as the Bac-

teroides fragilis toxin disrupt the intestinal barrier [72]. 

Serum samples from individuals with dementia have 

increased markers of gut permeability, such as serum 

diamine oxidase levels, and increased infl ammatory 

mediators including the soluble cluster of diff erentiation 

14 levels compared to controls [73]. 

The cross-talk between AD 
and sex- differences 
SEX DIFFERENCES 
IN THE INCIDENCE OF AD
Two-thirds of AD patients are women, and women 

have a greater lifetime risk of developing AD (1  in 5) 

compared with men (1  in 10) [74]. Sex-specifi c diff er-

ences in genetics, race, brain structure, and function, sex 

hormones, traumatic brain injury, infection and infl am-

mations, and lifestyle factors (e.g., education, occupa-

tion, exercise, and sleep) may contribute to AD devel-

opment. Females have a higher frequency of AD due to 

their greater longevity than males [75].

Genetic factor 
(The APO E gene)
Th e gene of APOE is present on chromosome 19 and 

there are three alleles (ε2=8 %, ε3=77 %, and ε4=15 %). 

APOE ε4  is associated with AD [76]. Th e eff ect of the 

APOE ε4 genotype is more pronounced in women than 

in men [77]. AD risk increases nearly 4- and 10-fold in 

women with one and two APOE ε4, whereas men exhibit 

essentially no increased risk with one APOE and a four-

fold increased risk with two APOE ε4 [78]. 

Race
In general, older Hispanics and African Americans 

are more likely to get AD than older whites [79]. Dif-

ferences in health, lifestyle, and socioeconomic status 

are believed to contribute to their increased risk of 

AD. Th ese include a higher prevalence of CVD, T2DM, 

hypertension, and early childhood adversity, as well as 

low education and physical activity [80].

Brain structure and functions
Head size and cerebral brain volume are 10 % larger 

in men than in women [81]. Also, women have a higher 

percentage of grey matter and hippocampus, whereas 

men have a higher percentage of white matter, amygdala, 

and thalamus. Th ese sex diff erences contribute to perfor-

mance diff erences. In particular, men perform better on 

visually oriented tasks, while women perform better on 

verbal memory [82].
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Hormonal factor
Estrogen is protective against AD pathology. 

It reduces levels of Aβ by stimulating the generation of 

amyloid precursor protein (APP)-containing vesicles 

from the Golgi network, thereby promoting APP deliv-

ery to cell surfaces [83].

It has been shown to play a role in emotions, memory, 

and cognitive functions. Several studies have shown a 

higher incidence of AD in females aft er menopause [84]. 

Females who started hormone replacement treatment 

within 5 years aft er menopause had a 30 % reduced inci-

dence of AD than women who did not utilize hormone 

replacement therapy [85].

In addition to estrogen and testosterone, other hor-

mones, including oxytocin, prolactin, and follicle-stimu-

lating hormone (FSH), have been implicated in processes 

related to AD. Oxytocin and prolactin may be involved 

in neuroprotection and the regulation of infl amma-

tion  [86]. Elevated FSH levels are associated with lipid 

metabolism, obesity, and cognitive deterioration in 

menopausal women. Th e blockade of FSH improved 

cognition in mice with AD [87].

Traumatic Brain Injury 
Th ere is a link between traumatic brain injury (TBI) 

and an increased AD risk [88]. Compared to their male 

counterparts, females are far more likely to experience 

worse outcomes, more severe symptoms, and a slower 

pace of recovery aft er moderate traumatic brain injury 

and concussions [89]. Estrogen administration pre- and 

post-TBI is associated with increased neuronal survival, 

signifi cant reductions in apoptosis, and improvements in 

functional outcomes [90].

Infection and Inflammation
It has been shown that there are sex diff erences in the 

way that infections and infl ammation are responded to 

and experienced; in particular, when there is a decrease 

in estradiol levels, females tend to have more severe ill-

ness and poorer prognoses than males [91]. For example, 

especially aft er menopause, women are more likely to 

develop chronic infl ammatory diseases such as multiple 

sclerosis, lupus, and rheumatoid arthritis [92].

Lifestyle Factors
A sedentary life is associated with a higher risk of 

dementia and greater cognitive decline among older 

adults [93]. Women tend to engage in less physical activi-

ties than men. It has been demonstrated that increased 

physical activity increases the synthesis of brain-derived 

neurotrophic factor (BDNF), which is crucial for the 

development, growth, and plasticity of neurons, as well 

as the creation, survival, and synaptic plasticity of new 

neurons in the hippocampus [94]. 

A higher risk of AD is linked to low levels of occu-

pational and educational performance. More education 

and mentally demanding jobs increase one’s cognitive 

reserve. Women in low-income nations are less likely 

than males to have access to schooling, which may have 

negatively impacted their ability to accumulate cognitive 

reserve [95]. When compared to men, women are gener-

ally at a greater risk for sleep deprivation and insomnia, 

especially aft er menopause. Sleep deprivation leads to an 

increase in Aβ plaque accumulation [96]. 

SEX DIFFERENCES 
IN SYMPTOMS
Female patients were more frequently to show cog-

nitive and functional decline, depression, delusion, and 

memory impairment including verbal learning, delayed 

recall, and visual memory [97]. While males were more 

likely to exhibit indiff erence, anxiousness, and hostility 

[98]. 

A meta-analysis of 15 studies revealed a consistently 

better performance in males over females on verbal, 

visuospatial, episodic, and semantic memory indepen-

dent of age, education level, and disease severity [99]. 

However, it has been reported that premorbid depressive 

symptoms, signifi cantly increased the risk for dementia, 

particularly AD in men but not in women [100]. Women 

seem to be more susceptible to pathological lesions while 

men have greater cognitive reserve [101].

SEX DIFFERENCES 
IN DIAGNOSIS
A study examined Aβ and tau levels in the brain by 

positron emission tomography scanning in 298  cogni-

tively normal-aged men and women found that women 

had higher levels of AD pathology, despite not having 

symptoms. Th is shows that while women may be more 

susceptible to the development of AD pathology and 

symptoms, there may be sex-specifi c characteristics 

that compensate for the early stages of the illness [102]. 

In  example, cognitive impairment in women is linked 

with bigger reductions in fl uency capability, whereas 

in males it is associated with considerable declines in 

visual-spatial ability. In women, the intensity of delirium 

was connected with dementia [103]. 

In women, delirium severity was related to dementia 

severity. For men, unlike for women, delirium sever-

ity was greater in those with lower educational levels. 

Differences were noted based on gender and race. Afri-

can American women reported greater difficulty with 

all Basic activities of Daily Living (BADLs) and Instru-

mental Activities of Daily Living (IADLs) except dress-

ing and using the telephone. In  comparison to males, 

non-Hispanic White women reported considerably 

more difficulty with transfers, indicating a gender gap 

in this mobility-related daily activity. African Ameri-

can men and non-Hispanic White men demonstrated 

an equivalent prevalence of difficulty for all BADL 

tasks. However, for all IADLs African American men 

reported greater difficulty compared to non-Hispanic 

White men [104]. 
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Studies using magnetic resonance imaging (MRI) 

showed greater loss of gray matter in brain regions, 

including the bilateral precuneus, caudate nucleus, 

entorhinal gyrus, thalamus, middle temporal gyrus, 

insula, and amygdala in women with AD compared to 

men [105]. Furthermore, neuroimaging studies showed 

that the rate of hippocampal atrophy affects the pro-

gression of AD in females more than in males. A neu-

roimaging study showed that post-menopausal women 

exhibited higher tau and global Aβ deposition than 

men in the inferior parietal, rostral middle frontal, 

and lateral-occipital regions compared to age-matched 

men [106]. 

Potential Therapeutic Strategies 
for AD Targeting the Microbiota-
Gut-Brain Axis

Dietary modifi cation

Mediterranean diet is associated with a high input of 

fruits, vegetables, cereals, and legumes; and a low input of 

meat, high-fat dairy, and sweets [107]. It’s characterized 

by bettered cognition, reduced brain atrophy in regions 

vulnerable to announcement pathology, advanced 

tube carotenoid situations and paraoxonase exertion, 

advanced SCFA situations, increased gut microbial 

diversity, and lower supplemental labels of infl ammation 

(e.g., C- reactive protein) [108]. 

Reduced infl ammation and oxidative stress in the 

brain, and high situations of fi ber, vitamin C, β- caro-

tene, and folate are the neuroprotective mechanisms of 

these diets. As  a result, it improves brain integrity and 

increases the quantum of brain towel [109]. It  has also 

been reported that impregnated and trans adipose acid 

insuffi  ciency may reduce BBB dysfunction and amyloid 

aggregation [110]. 

Also, the high input of fi ber, vitamins (e.g., B1, B9, 

and B6), and minerals (copper, manganese, magnesium, 

iron, and potassium), were associated with bettered cog-

nition and reduced frailty in another study [111]. Salu-

tary rudiments rich in Vitamin D3 (e.g., dairy and fi sh) 

promote the neural growth factor protein [112], and 

those rich in fl avonoids (e.g., grapes, citrus, and green 

tea) or the polyunsaturated adipose acid, docosahexae-

noic acid (e.g., fi sh) may reduce Aβ and tau pathology 

and neuroinfl ammation [113].

Analogous diets, similar to the Dietary Approaches 

to Stop Hypertension (DASH) diet, also have salutary 

goods on brain health when combined with exercise 

[114]. Diets that combine rudiments from both the 

Mediterranean and DASH diets, which are rich in 

fruits, vegetables, whole grains, low-fat dairy, and spare 

protein, may be more effective in delaying cognitive 

decline [115].

Th e ketogenic diet also has salutary goods in brain 

health. In announcement mouse models, ketones reduce 

oxidative stress, help intracellular uptake of Aβ, and 

ameliorate synaptic malleability [116]. In mice models, 

ketone bodies have been demonstrated to infl uence neu-

rotransmission, reduce neur oinfl ammation and oxida-

tive stress, as well as reduce Aβ accumulation, and ame-

liorate literacy and memory capacities [117]. likewise, 

the ketogenic diet has been shown to alter the gut micro-

biome, reduce announcement pathology and ameliorate 

cognition [118].

Th e combination of the Mediterranean and ketogenic 

diets is associated with increased SCFA product by GM, 

bettered CSF labels of Aβ and tau, and better cognitive 

performance [119]. 

Table 1. Potential therapeutic strategies for ad targeting the microbiota-gut-brain axis

Th erapeutic strategies Mechanism Refs

1. Dietary Modifi cation:

Mediterranean diet It enhances cognition and gut microbial diversity. It also reduces brain atrophy, 

BBB dysfunction, amyloid aggregation oxidative stress and neuroinfl ammation.

108, 109, 110

Ketogenic diet It reduces neuroinfl ammation, Aβ accumulation and oxidative stress. It helps 

intracellular uptake of Aβ, and ameliorate synaptic malleability

116, 117

Intermittent fasting It promotes hippocampal neurogenesis through activation of GSK-3β and increased 

BDNF, increase insulin perceptivity, reduce infl ammation, and promote autophagy

120

2. Antibiotics It reduces the intestinal microfl ora, microglial exertion and pro-infl ammatory cytokines. 122, 123

3. Prebiotics It enhances cognitive and memory functions, butyrate levels, production of SCFAs, 

restoring the balance between anti- and pro-infl ammatory bacteria in the GM, 

insulin sensitivity and production of nerve growth factor and BDNF. It also reduces 

Aβ accumulation, restoration of redox homeostasis and neuroinfl ammation.

127, 128, 42, 130

4. Probiotics It enhances cognitive and memory functions , immunomodulation, long-term 

potentiation, and intestinal epithelial barrier and BBB functions. It also reduces 

neuroinfl ammation, Aβ accumulation and oxidative stress.

134, 136

5.  Fecal microbiota 

transplantation

It enhances cognitive and memory functions, synaptic plasticity and boosted 

SCFA-producing gut microbes. It reduces neurogenesis, memory impairment, 

infl ammatory cytokines, and Aβ plaque formation.

123, 108
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Intermittent fasting has also been shown to promote 

hippocampal neurogenesis through activation of gly-

cogen synthase kinase (GSK)- 3β and increased BDNF, 

increase insulin perceptivity, reduce infl ammation, and 

promote autophagy and protein concurrence in beast 

studies [120]. A  30  reduction in calories from carbo-

hydrates averted Aβ shrine accumulation in a model of 

AD complaint in womanish, but not manly mice [121], 

which was associated with coitus-specifi c changes in 

amyloid-precursor processing enzymes. 

In summary, salutary interventions are generally safer 

and further salutary than medicine remedies because 

they’re aff ordable, easy to administer, and reduce the 

burden on caregivers of announcement cases. 

Antibiotics 

Antibiotics can aff ect AD by changing the intestinal 

m icrofl ora. DNA analysis of the cecum and feces of mice 

treated with antibiotics showed that Aβ shrine deposit 

was signifi cantly reduced and could restore intestinal 

microfl ora analogous to that of the control group. Like-

wise, intestinal permeability was also restored, and glial 

cell reactivity in the original area of the shrine was weak-

ened [122]. It also reduced microglial exertion and pro-

infl ammatory cytokines similar as IL- 1β and IL- 17A in 

manly, but not womanish [123]. 

Ceft riaxone use can reduce the increase of glutamate 

by perfecting glutamate transport, which is generally 

present in the area of Aβ shrine deposit, thereby perfect-

ing neuronal activity in mice [124]. 

Still, some antibiotics (similar to streptozotocin and 

ampicillin) can disrupt the intestinal bacteria balance 

[125]. Th e use of these antibiotics is conducive to or 

worsens the course of disease. Such as, rats taking ampi-

cillin have elevated glucocorticoids, increased anxiety 

and worse spatial memory. Th e increase in glucocorti-

coids is related to memory impairment and dropped 

hippocampal BDNF, common features of AD pathology. 

Ampicillin treatment also signifi cantly depresses the 

action of NMDA receptors in the hippocampus of rats 

[126]. 

Prebiotics 

Prebiotics are short-chain carbohydrate substances 

able to widely stimulate the growth and/ or activity of 

one or more benefi cial gut bacteria [127]. Th ey have also 

decreased Aβ accumulation, restoration of redox homeo-

stasis, and increased butyrate levels [42].

Yeast beta-glucan has elevated the production of 

SCFAs, restoring the balance between anti  — and pro-

infl ammatory bacteria in the GM and reduced neuroin-

fl ammation [128]. 

Mannan oligosaccharides have improved cognitive 

and memory functions, enhanced synthesis of SCFAs, 

reduced accumulation of Aβ in the cerebral cortex, hip-

pocampus, and amygdala, as well as reduced neuroin-

fl ammation [42]. 

Lactulose has been shown to reduce neuroinfl am-

mation, promote insulin sensitivity, and improve short-

term memory and learning [129].

Ferulic acid has anti-infl ammatory and anti-oxidant 

eff ects and increases the production of nerve growth 

factor and BDNF [130]. 

Th e eff ect of prebiotics was also diff erent between the 

sexes. Th e administration of oligofructose increased the 

abundance of Bacteroidetes in female rats though the 

butyrate levels were increased, but not in males, [131].

Still, other authors suggest that further substantia-

tion for the use of prebiotics in clinical practice is still 

demanded for concluding the normalization of several 

factors such as age, gender, race, and diet [132]. 

Probiotics

It is the live microorganisms that change micro-

biota toward a benefi cial state [133]. Probiotic supple-

mentation causes improvement of immunomodulation, 

long-term potentiation, and intestinal epithelial barrier 

and BBB functions [134]. Mice treated with probiotics 

showed increased memory and signifi cantly lower quan-

tities of plaques and neuroinfl ammation [135]. 

Probiotics have anti-infl ammatory, anti-stress, and 

anti-oxidant eff ects in humans [136].

Th e eff ect of probiotics was also diff erent between the 

sexes, they lowered the colonic mucosal mast cell count 

and decreased the levels of infl ammatory cytokines only 

in females but not in males [137]. 

A mixture of a probiotic plus a prebiotic, and syn-

biotic supplement improved memory, visual-spatial, 

executive, and linguistic abilities in test subjects and 

decreased the formation of proinfl ammatory cytokines 

(IL-8, IL-12, and TNF-α) [138].

Fecal microbiota transplantation

Fecal microbiota transplantation (FMT) is the tech-

nique of introducing prescreened feces into patients’ GI 

tracts to restore function and boost the total variety of 

GM [139]. Fecal material is expected to come from a 

well-organized stool bank and be administered via colo-

noscopy, enema, or capsule [140]. 

Dodiya et al. [123] found that FMT enhanced cogni-

tion, lowered Aβ buildup and tau expression, improved 

synaptic plasticity, and boosted SCFA-producing gut 

microbes. Transplanting feces from AD model donor 

mice into healthy mice led to decreased of neurogenesis, 

memory impairment, infl ammatory cytokines, and Aβ 

plaque formation [108]. 

Conclusion
AD is a global health crisis. Th e gut-brain axis 

controls several aspects of brain and gut physiology. 

Th rough a number of pathways, gut dysbiosis contrib-

utes to the pathophysiology of AD and cognitive decline. 

It  results in the aggregation of Tau and Aβ proteins, 
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immunological dysregulation, neuroinfl ammation, dis-

ruption of the blood-brain barrier, oxidative stress, and 

leaky gut. Sex diff erences may have a major impact on 

GM. Women make up two thirds of AD patients, and 

they are more likely than males to have AD during their 

lifetime. AD treatment strategies that target the gut-

brain-microbiota axis include dietary changes. Th ese 

strategies may be more eff ective when combined with a 

high-fi ber, vitamin- and mineral-rich diet. Intermittent 

fasting combined with a ketogenic diet activates GSK-3β 

and increases BDNF to support hippocampal neurogen-

esis. Probiotics, prebiotics, and fecal microbiota trans-

plantation might all be important. 
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