УДК 616.12-008.331.1

С.В. Самоявчева ^{2*}, Е. В. Гурвич ¹, В. В. Шкарин ¹

¹ГОУ ВПО «Нижегородская государственная медицинская академия», кафедра терапии ФПКВ, г. Нижний Новгород ²НУЗ «Дорожная клиническая больница на ст. Горький ОАО «РЖД»», г. Нижний Новгород

ВЗАИМОСВЯЗИ ДИАСТОЛИЧЕСКОЙ ФУНКЦИИ ЛЕВОГО ЖЕЛУДОЧКА С ЕГО МОРФОФУНКЦИОНАЛЬНЫМИ ОСОБЕННОСТЯМИ, ПОКАЗАТЕЛЯМИ ПЕРИФЕРИЧЕСКОЙ ГЕМОДИНАМИКИ И ДАННЫМИ СУТОЧНОГО МОНИТОРИРОВАНИЯ АРТЕРИАЛЬНОГО ДАВЛЕНИЯ У ПАЦИЕНТОВ С АРТЕРИАЛЬНОЙ ГИПЕРТЕНЗИЕЙ

Резюме

При концентрическом и эксцентрическом типах ГЛЖ формируются различные нарушения диастолической функции ЛЖ. Процессы повышения жёсткости миокарда и снижения эластичности крупных артерий развиваются параллельно и сопровождаются на ранних стадиях повышением встречаемости изолированной систолической АГ, на более поздних — изолированной систолической и систолодиастолической АГ. Ключевые слова: диастолическая функция левого желудочка, гипертрофия левого желудочка, артериальная гипертензия, суточное мониторирование артериального давления.

Abstract

Various disorders of the diastolic function of left ventricle are formed due to concentric and eccentric types of hypertrophy. The processes of elevation of myocardial stiffness and reduction of lard-bore arterial vessel elastance develop parallel and at the early stages are accompanied with the rise of isolated systolic hypertension frequency, at the later stages — isolated systolic and systolic arterial hypertension.

Key words: diastolic function of left ventricle, hypertrophy of left ventricle, arterial hypertension, 24-hour blood pressure monitoring.

 $A\Delta$ — артериальное давление, $A\Gamma$ — артериальная гипертензия, $\Delta\Delta$ — диастолическая дисфункция, Λ Ж — левый желудочек, $\Gamma\Lambda$ Ж — гипертрофия Λ Ж, $CMA\Delta$ — суточное мониторирование $A\Delta$.

ДД ЛЖ является одним из наиболее ранних предикторов высокого риска сердечно-сосудистых осложнений и смертности больных АГ. Распространённость ДД ЛЖ у больных АГ, по данным различных исследований, колеблется от 30 до 87% [8]. В её формировании существенную роль играют возраст, генетические и метаболические факторы, уровень АД, ремоделирование ЛЖ и ГЛЖ. Актуальными являются проблемы индивидуального прогнозирования и раннего выявления факторов, способствующих развитию ДД ЛЖ.

Цель исследования: изучить фазовую и скоростную структуру диастолы у пациентов с АГ и сопоставить с морфофункциональными характеристиками

АЖ, показателями периферической гемодинамики и данными СМАД.

Материалы и методы

В исследование методом случайной выборки было включено 52 пациента, по 26 мужчин и женщин, с АГ 1–3 степени, не получавших гипотензивную терапию. Средний возраст обследованных составил $49,70\pm12,12$ года. В амбулаторных условиях по стандартным методикам выполнены СМАД суточным монитором АД «ТМ-2421» (А&D Сотрапу, Япония) комбинированным аускультативно-осциллометрическим методом и эхокардиография (ЭхоКГ)

^{*} Контакты. E-mail: dkb-smr@yandex.ru. Телефон: (8831) 245-33-17

ультразвуковым сканером «SIM 5000 Plus» (ESAOTE Biomedica, Италия, совместно с фирмой «Росбиомедика», Россия). У каждого пациента проанализированы стандартные данные СМАД: среднедневные и средненочные показатели АД, показатели нагрузки давлением, вариабельность систолического АД (САД) и диастолического АД (ДАД), суточный ритм АД. Для более детального анализа СМАД каждое измерение АД охарактеризовано следующими параметрами: САД, ДАД, пульсовое давление (АДП = САД-ДАД), среднее давление (АДС = ДАД + 1/3 АДП), структурная точка АД (СТАД = ДАД/САД), частота сердечных сокращений (ЧСС).

На основании данных параметров результаты СМАД каждого пациента стратифицированы на сходные группы. Методом стратификации выбран кластерный анализ с использованием алгоритма Варда, применялась программа статистической обработки данных Statgraphics Plus 5,0. Визуально с помощью дендрограмм и 2D диаграмм определено количество кластеров АД в каждом протоколе СМАД и высчитано их процентное соотношение.

При ЭхоКГ оценены внутренний диаметр корня аорты, максимальный и минимальный размеры

левого предсердия, время изгнания крови из ЛЖ, конечный систолический размер ЛЖ, размеры АЖ в конце фазы быстрого наполнения (ФБН) и медленного наполнения (ФМН), конечный диастолический размер (КДР), продолжительность систолы и диастолы ЛЖ, продолжительность ФБН и ФМН ЛЖ, толщина межжелудочковой перегородки (МЖП) и задней стенки ЛЖ (ЗСЛЖ) в диастолу и систолу. Учтены вес и рост пациентов, САД, ДАД, ЧСС. С помощью компьютерной программы по расчёту показателей центральной внутрисердечной и периферической гемодинамики COR [5] вычислены показатели периферической гемодинамики: общее периферическое сосудистое сопротивление (ОПСС) и индекс эластичности сосудов (ИЭ), показатели диастолической функции: фракции наполнения ЛЖ в фазы быстрого и медленного наполнения, в систолу предсердий (ФЗ1, ФЗ2, ФЗ3), скорости кровотока в фазы быстрого и медленного наполнения (V1 и V2). Определена структурная точка кардиоцикла (СТКЦ), представляющая собой отношение продолжительности диастолы к общей продолжительности кардиоцикла.

Все пациенты стратифицированы на кластеры, объединённые общими чертами показателей СМАД,

Таблица 1. Стратификация пациентов на кластеры по показателям периферической гемодинамики, диастолической функции ЛЖ и кластерного анализа СМАД

Показатели	Кластеры					
	1 9(15,79%)	2 21(36,84%)	3 14(24,56%)	4 8(14,04%)		
ОПСС, дин*сек*см	1262,92 ± 415,86	1582,09 ± 456,7	$1314,84 \pm 304,09$	2058,2 ± 534,37		
иэ	$1,83 \pm 0,27$	$1,62 \pm 0,77$	1.8 ± 0.48	$1,31 \pm 0,42$		
Ф31,%	54,77	53,12 ± 13,02	67,35 ± 11,73	$44,\!16 \pm 10,\!7$		
Ф32,%	25,53	$19,83 \pm 10,44$	$6,77 \pm 6,32$	$12,75 \pm 7,54$		
Ф33,%	19,71	27,05 ± 12,7	$25,88 \pm 12,88$	$43,\!08 \pm 8,\!03$		
СТКЦ	$0,58 \pm 0,03$	0.61 ± 0.06	0.6 ± 0.06	$0,58 \pm 0,03$		
V1, мл/с	$506,89 \pm 234,06$	369,84 ± 124,12	645,19 ± 193,83	$281,76 \pm 58,51$		
V2, мл/с	$110,9 \pm 51,6$	82,77 ± 60,29	26,52 ± 32,71	$43,33 \pm 24,66$		
Нормальное АД день, %	10,30	31,21	18	7,53		
Нормальное АД ночь, %	10,42	13,05	7,36	5,3		
Нормальное АД сутки, %	20,72	44,26	25,36	12,83		
ИСАГдень, %	2,03	24,93	9,59	5,98		
ИСАГночь, %	0,48	1,54	1,07	0		
ИСАГсутки, %	2,51	26,47	10,66	5,98		
ИДАГдень, %	9,9	5,39	25,41	15,24		
ИДАГночь, %	4,17	0	3,71	0		
ИДАГсутки, %	14,07	5,39	29,12	15,24		
СДАГдень, %	54,71	17,7	24,64	46,64		
СДАГночь, %	5,25	4,07	8,2	16,33		
СДАГсутки, %	59,96	21,77	32,84	62,97		

периферической гемодинамики и диастолической функции ЛЖ. Как и при анализе данных СМАД, стратификация осуществлена методом кластерного анализа с использованием алгоритма Варда. Результаты представлены в табл. 1.

Для каждого кластера рассчитаны средние значения возраста, индекса массы тела по формуле Кетле (ИМТ = вес (кг)/рост (м²)), объёма талии (ОТ), массы миокарда ЛЖ (ММЛЖ) и индекса массы миокарда ЛЖ (ИММЛЖ) по формулам Деверье и Тейхольца, относительной толщины стенок ЛЖ по

формуле Деверье (ОТС = (ЗСЛЖд + МЖПд)/КДР), предсердно-желудочкового отношения (ПЖО = размер левого предсердия в диастолу/КДР), конечного диастолического объёма ЛЖ (КДО), индекса объём/масса ЛЖ (КДО/ММЛЖ) по Тейхольцу, АДП, САД и ДАД в дневные и ночные часы, показателей нагрузки давлением по индексу времени САД (ИВ САД), индексу времени ДАД (ИВ ДАД) и вариабельности АД, определены морфофункциональные типы (МФТ) ЛЖ, типы геометрии ЛЖ и их количество в каждом кластере. Характеристика кластеров представлена в табл. 2.

Таблица 2. Общая характеристика кластеров

	Кластеры					
Показатели	1 9(15,79%)	2 21(36,84%)	3 14(24,56%)	4 8(14,04%)		
Возраст, годы	$46,44 \pm 8,11$	52,19 ± 12,72	$42,5 \pm 10,76$	57,13 ± 7,75		
ИМТ, кг/м²	$29,92 \pm 3,37$	$31,42 \pm 5,66$	$30,55 \pm 5,82$	$28,05 \pm 2,3$		
отс	0.4 ± 0.08	0.41 ± 0.12	0.38 ± 0.05	0.53 ± 0.11		
пжо	0.64 ± 0.12	0.68 ± 0.1	0.65 ± 0.08	$0,74 \pm 0,1$		
КДО, мл	$136,49 \pm 20,33$	$130,12 \pm 42,65$	147,38 ± 36,15	$103,35 \pm 8,26$		
ММЛЖ по Тейхольцу, г (м)	$178,41 \pm 32,99$	$173,84 \pm 55,86$	$172,75 \pm 36,79$	224,07 ± 13,7		
ММЛЖ по Тейхольцу, г (ж)	$124,75 \pm 34,29$	149,77 ± 43,22	$150,87 \pm 34,69$	169,01 ± 49,33		
ИММЛЖ по Тейхольцу (м)	81,07 ± 13,01	$78,88 \pm 20,28$	$76,82 \pm 14,19$	$104,16 \pm 5,92$		
ИММЛЖ по Тейхольцу (ж)	$65,7 \pm 8,77$	$78,\!25 \pm 23,\!36$	$75,92 \pm 8,74$	$93 \pm 29{,}72$		
МФТ ЛЖ (количество пациентов)						
• сбалансированный	6	12	11	1		
• гипертрофический	1	4	0	6		
• дилатационный	2	5	3	1		
Геометрия ЛЖ (кол-во пациентов)						
• нормальная геометрия	4	9	5	1		
• концентрическое ремоделирование	1	3	1	2		
• концентрическая гипертрофия	2	3	1	5		
• эксцентрическая гипертрофия	2	6	7	0		
АДП	$56,44 \pm 10,06$	66 ± 21,74	$60,93 \pm 12,87$	$61,\!38 \pm 17,\!09$		
Среднедневное САД, мм рт. ст.	$145,\!66 \pm 10,\!42$	$140,\!28 \pm 9,\!08$	$140,91 \pm 9,38$	150,7 ± 10,33		
Среднедневное ДАД, мм рт. ст.	$96,29 \pm 6,15$	$83,3 \pm 6,79$	91,61 ± 7,47	$95,98 \pm 7,54$		
ИВ САД день, %	$65,\!51 \pm 22,\!71$	$49,85 \pm 18,47$	$52,42 \pm 19,9$	69,31 ± 21,68		
ИВ ДАД день, %	$72,63 \pm 17,01$	$32,\!02 \pm 18,\!57$	$55,39 \pm 24,91$	$69,71 \pm 23,18$		
ВСАД день, мм рт. ст.	$15,43 \pm 3,84$	$18,42 \pm 2,99$	$15,04 \pm 3,65$	$16,84 \pm 3,56$		
ВДАД день, мм рт. ст.	$11,64 \pm 1,43$	12,81 ± 2,79	11,33 ± 1,91	$10,\!84 \pm 1,\!92$		
Средненочное САД, мм рт. ст.	$120,\!53 \pm 11,\!8$	$121,4 \pm 13,45$	$123,\!48 \pm 13,\!57$	130,41 ± 8,99		
Средненочное ДАД, мм рт. ст.	$75,33 \pm 8,33$	$69,65 \pm 10,49$	$77,04 \pm 10,01$	82,78 ± 8,9		
ИВ САД ночь, %	$52,73 \pm 32,79$	$53,12 \pm 39,97$	$58,82 \pm 43,03$	77,8 ± 27,58		
ИВ ДАД ночь, %	$32,6 \pm 27,61$	$19,4 \pm 29,84$	$40,19 \pm 35,52$	$60,98 \pm 34,6$		
ВСАД ночь, мм рт. ст.	$9,84 \pm 3,64$	$10,98 \pm 5,09$	$8,41 \pm 2,54$	$10,65 \pm 2,18$		
ВДАД ночь, мм рт. ст.	$7,\!38 \pm 2,\!1$	$7,2\pm2,4$	$7,21 \pm 2,04$	$8,\!24 \pm 2,\!18$		

Примечание. ВСАД — вариабельность САД, ВДАД — вариабельность ДАД.

Результаты и обсуждение

Показатели СМАД стратифицированы на кластеры нормального и пограничного АД, изолированной систолической АГ (ИСАГ), изолированной диастолической АГ (ИДАГ), систолодиастолической АГ (СДАГ). Пациенты стратифицированы на 4 кластера.

Кластер № 1(n = 9 пациентов, 17,31%). Средний возраст — 46,44 ± 8,11 года. Диастолическая функция АЖ нормальная. Самая высокая эластичность сосудов: наименьшее ОПСС и наибольший ИЭ. Преобладают пациенты со сбалансированным МФТ ЛЖ (66,67%), минимальное количество — с гипертрофическим МФТ (11,11%). У 44,44% обследованных нормальная геометрия ЛЖ, по 22,22% имеют концентрическую и эксцентрическую гипертрофию. Самые низкие показатели ПЖО и АДП. Значимо повышены среднедневное САД и ИВ САД, наибольшие среднедневное ДАД и ИВ ДАД днём, наименьшие средненочное САД и ИВ САД ночью. Самая низкая встречаемость ИСАГ в течение суток и высокая распространённость СДАГ в дневные часы. Известно, что отсутствие адекватного снижения АД в ночные часы часто ассоциируется с повышенной вовлечённостью в патологический процесс органов-мишеней [4]. В рассматриваемом кластере СИ по САД — 17,26% (диппер), по ДАД — 21,76% (гипердиппер). При достаточном ночном снижении АД, несмотря на значимое повышение среднедневных значений САД и ДАД, показателей нагрузки давлением в дневные часы и высокую встречаемость СДАГ, у большинства пациентов (66,67%) МФТ ЛЖ сбалансированный, у 44,44% не выявлено изменений геометрии ЛЖ.

Кластер № 2 (n = 21 пациент, 40,38%). Средний возраст — 52,19 года. Наибольшая степень абдоминального ожирения: самые высокие показатели ИМТ и ОТ. Несколько увеличен вклад систолы предсердий при снижении камерной расслабимости и растяжимости: фазовая структура диастолы изменена в пользу некоторого увеличения ФЗЗ. Снижена эластичность сосудов: повышено ОПСС и снижен ИЭ. Преобладают пациенты со сбалансированным МФТ Λ Ж (57,14%), у 19,05% — гипертрофический МФТ, у 23,81% — дилатационный МФТ. Нормальная геометрия ЛЖ выявлена у 42,86% пациентов, у 28,57% — концентрическое ремоделирование и концентрическая ГЛЖ, у 28,57% — эксцентрическая ГЛЖ. Самое высокое АДП. Днём самые низкие средние САД, ДАД, ИВ САД, ИВ ДАД, но вариабельность САД и ДАД наибольшая, ночью самые низкие среднее ДАД, ИВ ДАД, вариабельность ДАД. Днём и ночью самый высокий процент распространённости нормального АД и ИСАГ. Встречаемость ИСАГ в 10,5 раза больше, чем среди пациентов кластера № 1, что может быть обусловлено

нарастанием ремоделирования сосудистой стенки с увеличением возраста пациентов и степени ожирения. Ремоделирование стенок магистральных сосудов с последующим снижением растяжимости сосудов и утратой способности гасить колебания пульсовой волны имеет особое значение в развитии ИСАГ. ИСАГ рассматривается не только как фактор риска, но уже и как маркёр поражения органов-мишеней [2]. Хотя среднедневные и средненочные показатели АД не превышают пограничного уровня, самая высокая встречаемость ИСАГ днём и ночью, наибольшие показатели АДП и вариабельности АД в дневные часы, снижение эластичности сосудов, некоторое увеличение вклада систолы предсердий свидетельствуют о повышении жёсткости сосудов и миокарда.

Кластер № 3 (n = 14 пациентов, 26,92%). Средний возраст — $42,5 \pm 10,76$ года. Самая молодая возрастная группа. Самый близкий к норме ИММЛЖ. Наименьшая ОТС, наибольший КДО. Нарушение фазовой и скоростной структуры диастолы с изменением соотношения фаз быстрого и медленного наполнения: наибольшие Ф31 и V1, наименьшие Ф32 и V2, вклад систолы предсердий нормальный. Эластичность сосудов не изменена: ОПСС и ИЭ в пределах нормальных значений. У 78,57% пациентов — сбалансированный тип ЛЖ, у остальных 21,43% — дилатационный. Нарушения геометрии АЖ преобладают над нормальной геометрией, из них большую часть (77,78%) составляют эксцентрические гипертрофии. Повышена встречаемость ИСАГ и ИДАГ, по сравнению с кластером № 1 ИСАГ — в 4,2 раза, ИДАГ днём — в 2,6 раза, процент встречаемости ИДАГ наибольший.

Развитие ГАЖ обусловлено совокупностью множества факторов. По словам В.И. Маколкина [1], гемодинамическая перегрузка ЛЖ при АГ играет важную роль, однако одновременное наличие метаболических расстройств липидного и углеводного обмена, ожирения и вегетативного дисбаланса вносит свой вклад в развитие ГЛЖ. По данным Е.В. Шляхто и соавт. [6], концентрический вариант ремоделирования чаще встречается при умеренной АГ, чем при мягкой, в то время как эксцентрическая ГЛЖ — при мягкой АГ. У всех пациентов кластера № 3 выявлены метаболические нарушения: у 6 (42,86%) — метаболический синдром, у 7 (50%) нарушения липидного обмена, у 1 (7,14%) — нарушение углеводного и липидного обмена. В то же время среднедневные и средненочные значения САД и ДАД ниже, чем у пациентов кластера № 4 с преобладанием концентрических вариантов ремоделирования ЛЖ. Геометрические типы ремоделирования АЖ связаны с условиями, в которых они формируются [3]. Эксцентрическая гипертрофия развивается при объёмной перегрузке ЛЖ и способствует нарушению его диастолической функции в пользу ФБН, по-видимому, вследствие повышения преднагрузки и предсердно-желудочкового градиента АД. Жёсткость миокарда и эластичность сосудов не изменена, что подтверждается нормальными показателями вклада систолы предсердий, ОПСС и ИЭ.

Кластер № 4 (n = 8 пациентов, 15,38%). Наибольший средний возраст — 57,13 ± 7,75 года. Самые высокие показатели ММАЖ, ИММАЖ, ОТС. Фазовая и скоростная структура диастолы нарушены в пользу систолы предсердий. Страдает камерная растяжимость и расслабимость: снижены Ф31, Ф32, V1 и V2, причём Ф31 и V1 наименьшие, по сравнению с другими кластерами наиболее высокий вклад систолы предсердий. Самая низкая эластичность сосудов: наибольшее ОПСС и наименьший ИЭ. У 75% пациентов — гипертрофический МФТ ЛЖ, у 88% нарушена геометрия ЛЖ по типу концентрического ремоделирования и концентрической гипертрофии. Самое высокое ПЖО. Самые высокие среднедневные и средненочные значения АД, наибольшие показатели нагрузки давлением по ИВ САД в течение суток, по ИВ ДАД ночью, ИВ ДАД днём также высокий, близок к наибольшему уровню. Самая низкая встречаемость нормального AД и наибольшая — СДAГ как в дневные, так и в ночные часы.

Жёсткость артерий — один из важных аспектов патофизиологии сердечно-сосудистой системы. При снижении упруго-эластических свойств магистральных артерий нарушается их демпфирующая функция, что приводит к увеличению скорости распространения пульсовой волны и смещению отражённой волны давления из диастолы в позднюю систолу, повышению САД и АДП. Происходит увеличение постнагрузки на ЛЖ, что способствует развитию ГАЖ, увеличению потребления миокардом кислорода, развитию коронарной недостаточности, нарушению диастолической функции ЛЖ и развитию сердечной недостаточности [7, 9]. Маркёром тяжести и длительности ДД ЛЖ и предиктором сердечно-сосудистого риска является расширение левого предсердия. Наименьшая эластичность артерий и наибольшая жёсткость миокарда выявлены у пациентов самой старшей возрастной группы с наиболее высокими средними значениями АД, наибольшей нагрузкой давлением, с превалированием СДАГ. В данной группе пациентов отмечены самые высокие показатели ММАЖ, ИММАЖ, ОТС и ПЖО, явно преобладают гипертрофический МФТ ЛЖ и концентрическая ГЛЖ.

Выводы

1. ГАЖ способствует нарушениям диастолической функции АЖ, проявляющимся в изменениях фазо-

вой и скоростной структуры диастолы. При разных видах ГЛЖ выявлены различия в нарушениях диастолической функции. В случае концентрической ГЛЖ формируется ДД ЛЖ с нарушением камерной расслабимости, растяжимости и повышением вклада систолы предсердий. При эксцентрической ГЛЖ происходит перераспределение наполнения ЛЖ в пользу ФБН, вклад систолы предсердий остаётся нормальным.

- 2. Выявлена связь диастолической функции миокарда ЛЖ с эластичностью сосудистой стенки. Повышение жёсткости миокарда ЛЖ, сопровождающееся снижением камерной расслабимости, растяжимости и повышением вклада систолы предсердий, развивается параллельно со снижением эластичности крупных артерий.
- 3. Нарушения диастолической функции миокарда АЖ и изменения эластичности сосудистой стенки с увеличением её жёсткости и уменьшением буферной ёмкости сосудистого русла на ранних стадиях сопровождаются значительным увеличением встречаемости ИСАГ, на более поздних — ИСАГ и СДАГ.

Список литературы

- Маколкин В.И. Метаболический синдром. МИА, 2010.
- 2. Клинические разборы. Внутренние болезни. Под ред. Мухина Н.А. М.: Литтерра, 2005. С. 612.
- 3. *Нечесова Т.А., Коробко И.Ю., Кузнецова Н.И*. Ремоделирование левого желудочка: патогенез и методы оценки // Медицинские новости. 2008. № 11. С. 7–13.
- Рогоза А.Н., Агальцов М.В., Сергеева М.В. Суточное мониторирование артериального давления: варианты врачебных заключений и комментарии. Н. Новгород: ДЕКОМ, 2005. С. 64.
- 5. Шкарин В.В. Системный подход в диагностике, лечении и ведении пациентов с артериальной гипертензией в амбулаторных условиях. Дисс. ...д-ра мед. наук. Н. Новгород, 1999.
- Шляхто Е.В., Конради А.О., Захаров Д.В., Рудоманов О.Г.
 Структурно-функциональные изменения миокарда у больных гипертонической болезнью // Кардиология. 1999. № 2.
 С. 49–55.
- Chang K.C., Tseng Y.Z., Kuo T.S. et al. Impaired left ventricular relaxation and arterial stiffness in patients with essential hypertension // Clinical science. 1994. Vol. 87, № 6. P. 641–647.
- 8. Satpathy C., Mishra T.K., Satpathy R. et al. Diagnosis and management of diastolic dysfunction and heart failure // Amer. Fam. Physician. 2006. Vol. 73. P. 841–846.
- Watanabe H., Obtsuka S., Kakibana M. et al. Coronary circulation in dogs with an experimental decrease in aortic compliance // J. Am. Col. Cardiol. 1993. Vol. 21, № 6. P. 1497–1506.

Авторы заявляют, что данная работа, её тема, предмет и содержание не затрагивают конкурирующих интересов.