COVID-19 and Liver Damage
https://doi.org/10.20514/2226-6704-2020-10-3-188-197
Abstract
An outbreak of unknown pneumonia, caused by the novel severe acute respiratory syndrome coronavirus (SARS-CoV-2), was reported in China at the end of December 2019. On February 11, 2020, the World Health Organization officially named SARS-CoV-2 infection COVID-19 (Coronavirus Disease 2019). The most common clinical manifestation of COVID-19 is pneumonia. However, with the spread of the COVID-19 pandemic and analysis of clinical data, symptoms that are not characteristic of “atypical” pneumonia have been identified in patients. Neurological symptoms, skin and eye damage, etc., are described. The extrapulmonary presence of SARS-CoV-2 was also detected in cholangiocytes. Virus-induced effects, systemic inflammation (“cytokine storm”), hypoxia, hypovolemia, hypotension in shock, drug-induced hepatotoxicity, etc., are considered possible factors of liver damage. In 14-53 % of COVID-19 patients, changes in biochemical parameters, which usually do not require drug therapy, can be recorded. Acute hepatitis is very rare. However, special attention should be given to COVID-19 patients at risk: after liver transplantation; receiving immunosuppressants and antiviral drugs; and in cases of decompensated cirrhosis, acute-on-chronic liver failure, and hepatocellular carcinoma. Constant data sharing and open access to research data, new technologies, and up-to-date guidelines are required.
About the Authors
L. Yu. IlchenkoRussian Federation
Lyudmila Yu. Ilchenko - Department of Internal Medicine No. 2 Pirogov RNRMU.
Moscow
Competing Interests: not
I. G. Nikitin
Russian Federation
Department of Internal Medicine No. 2 Pirogov RNRMU.
Moscow
Competing Interests: not
I. G. Fedorov
Russian Federation
Department of Internal Medicine No. 2 Pirogov RNRMU.
Moscow
Competing Interests: not
References
1. Corona Resource Centre. [Electronic resource]. URL: https://coronavirus.jhu.edu/map.html (date of the application: 15.04.2020)
2. Guarner J. Three Emerging Coronaviruses in Two Decades The Story of SARS, MERS, and Now COVID-19. Am.J. Clin. Pathol. 2020; 153: 420-1. doi: 10.1093/AJCP/AQAA029
3. Lu R., Zhao X., Li J. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565-74; doi: 10.1016/S0140-6736(20)30251-8
4. Chen N., Zhou M., Dong X. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020; 395(10224):507-13. doi: 10.1016/S0140-6736(20)30211-7.
5. Li X., Geng M., Peng Y. et al. Molecular immune pathogenesis and diagnosis of COVID-19. J. Pharmaceutical. Analysis. 2020;10(2):102-8. doi: 10.1016/j.jpha.2020.03.001.
6. Rothan H.A., Byrareddy S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 2020; 109:102433. doi: 10.1016/j.jaut.2020.102433.
7. Xu Z., Shi L., Wang Y. et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020;8(4):420-2. doi: 10.1016/S2213-2600(20)30076-X.
8. Tai W., He L., Zhang X. et al. Characterization of the receptorbinding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell. Mol. Immunol. 2020; doi: 10.1038/s41423-020-0400-4.
9. Liu W., Li H. COVID-19: Attacks the 1-Beta Chain of Hemoglobin and Captures the Porphyrin to Inhibit Human Heme Metabolism. 2020. [Electronic resource]. URL: https://pan.baidu.com/s/1v8kP0zAyvnACXm-vJHWJuQ (date of the application: 20.04.2020)
10. Mehta P., McAuley D.F., Brown M. et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020; 395(10229):1033-1034. doi: 10.1016/S0140-6736(20)30628-0.
11. Arachchillage D.R. J., Laffan M. Abnormal Coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia J. Thromb. Haemost. 2020;18(5):1233-4. doi: 10.1111/jth.14820. doi: 10.1111/jth.14768.
12. Xu X., Barth R.F., Buja L.M. A call to action: the need for autopsies to determine the full extent of organ involvement associated with COVID-19 infections. CHEST. 2020. doi: 10.1016/j.chest.2020.03.060.
13. Hanley B., Lucas S.B., Youd E. et al. Autopsy in suspected COVID-19 cases. J. Clin. Pathol. 2020;73(5):239-42. doi: 10.1136/jclinpath-2020-206522.
14. The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team. The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19). China CCDC Weekly. 2020; 2: 113-22. doi: 10.3760/cma.j.issn.0254-6450.2020.02.003.
15. Sorbello M., El-Boghdadly K., Di Giacinto I. et al. The Italian coronavirus disease 2019 outbreak: recommendations from clinical practice. Anaesthesia. 2020. doi:10.1111/anae.15049.
16. Ministry of Health of the Russian Federation. Temporary guidelines «Prevention, diagnosis and treatment of new coronavirus infection (COVID-19)», version 6 (28.04.20).
17. Guo Y.R, Cao Q.D., Hong Z.S. et al. The origin, transmission and clinical therapies on coronavirus diseasе 2019 (COVID-19) outbreak — an update on the status. Med. Res. 2020;7(1):11. doi: 10.1186/s40779-020-00240-0.
18. Report on the joint technical mission of WHO and the People's Republic of China (PRC) on the problem of the new coronavirus infection COVID-2019. [Electronic resource]. URL: https://www. rosminzdrav.ru/news/2020/03/03/13469-predstavlen-otchet-o-rabote-mezhdunarodnoy-missii-voz-po-probleme-covid-19 (date of the application: 22.04.2020). [in Russian].
19. Chow E.J., Schwartz N.G., Tobolowsky F.A. Symptom Screening at Illness Onset of Health Care Personnel With SARS-CoV-2 Infection in King County, Washington. JAMA. 2020. doi: 10.1001/jama.2020.6637.
20. Eliezer M., Hautefort Ch., Hamel A-L. et al. Sudden and Complete Olfactory Loss Function as a Possible Symptom of COVID-19. JAMA. Otolaryngol. Head Neck. Surg. 2020. doi:10.1001/jamaoto.2020.0832
21. Xydakis M.S., Dehgani-Mobaraki P., Holbrook E.H. et al. Smell and taste dysfunction in patients with COVID-19. Lancet Infect. Dis. 2020; 20(4): e50. doi: 10.1016/S1473-3099(20)30293-0.
22. Oxley T.J., Mocco J., Majidi S. et al. Large-Vessel Stroke as a Presenting Feature of Covid-19 in the Young. NEJM. 2020. doi: 10.1056/NEJMc2009787.
23. Helms J., Kremer S., Merdji H. et al. Neurologic Features in Severe SARS-CoV-2 Infection. NEJM. 2020. doi: 10.1056/NEJMc2008597.
24. Cheema M., Aghazadeh H., Nazarali S. et al. Keratoconjunctivitis as the Initial Medical Presentation of the Novel Coronavirus Disease 2019 (COVID-19). Can. J. Ophthalmol. 2020. pii: S0008-4182(20)30305-7. doi: 10.1016/j.jcjo.2020.03.003.
25. Kim D., Quinn J., Pinsky B. et al. Rates of Co-infection Between SARS-CoV-2 and Other Respiratory Pathogens. JAMA. 2020. doi: https://jamanetwork.com/on04/15/2020.
26. Recalcati S. Cutaneous manifestations in COVID-19: a first perspective. J. Eur. Acad. Dermatol. Venereol. 2020. doi: 10.1111/JDV.16387.
27. Casas C.G., Catala A., Hernandez, G.C. et al. Classification of the cutaneous manifestations of COVID-19: a rapid prospective nationwide consensus study in Spain with 375 cases. Br.J. Dermatol. 2020. doi: 10.1111/BJD.19163
28. Cheema M., Aghazadeh H., Solarte C. et al. Keratoconjunctivitis as the initial medical presentation of the novel coronavirus disease 2019 (COVID-19). Canadian Journal of Ophthalmology. DOI: 10.1016/j.jcjo.2020.03.003 Corpus ID: 214758418 [Electronic resource]. URL: https://www.canadianjournalofophthalmology.ca/article/S0008-4182(20)30305-7/pdf (date of issue: 29.04.2020)
29. Morozov S.P., Protsenko D.N., Smetanina S.V. et al. Radiation diagnosis of coronary viral disease (COVID-19): organization, methodology, interpretation of results: preprint № ЦДТ — 2020 — I. М.: ГБУЗ «НПКЦ ДиТ ДЗМ», 2020; 60 р. [in Russian].
30. Lippi G., Favaloro E.J. D-dimer is Associated with Severity of Coronavirus Disease 2019: A Pooled Analysis. J. Thromb. Haemost. 2020. doi: 10.1055/s-0040-1709650.
31. Xu L., Liu J., Lu M. et al. Liver injury during highly pathogenic human coronavirus infections. Liver Int. 2020;40(5):998-1004. doi: 10.1111/liv.14435.
32. Guan W-J., Ni Z-Y., Hu Y. et al. Clinical characteristics of 2019 novel coronavirus infection in China. N Engl J Med. 2020;382:1708-20. doi: 10.1056/NEJMoa2002032.
33. Zhang C., Shi L., Wang F.S. Liver injury in COVID-19: management and challenges. Lancet Gastroenterol. Hepatol. 2020. doi: 10.1016/S2468-1253(20)30057-1.
34. Young B.E., Ong S.W. X., Kalimuddin S. et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA. 2020; 323(15): 1488-94. doi: 10.1001/jama.2020.3204pmid:http://www.ncbi.nlm.nih.gov/pubmed/32125362.
35. Cholankeril G., Podboy A., Aivaliotis V.I. et al. High Prevalence of Concurrent Gastrointestinal Manifestations in Patients with SARS-CoV-2: Early Experience from California. Gastroenterology. 2020.doi: 10.1053/j.gastro.2020.04.008.
36. Chen N., Zhou N., Dong X. et al. Epidemiological and Clinical Characteristics of 99 Cases of 2019 Novel Coronavirus Pneumonia in Wuhan, China: A Descriptive Study. Lancet. 2020;395(10223):507-13. doi: 10.1016/S0140-6736(20)30211-7.
37. Lin L., J iang X., Zhang Z. et al. Gastrointestinal symptoms of 95 cases with SARS- CoV-2 infection. Gut. 2020; pii: gutjnl-2020-321013. doi:10.1136/gutjnl-2020-321013
38. Wu Y., Guo C., Tang L. et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet. Gastroenterol. Hepatol. 2020; 5(5): 434-435. doi: 10.1016/S2468-1253(20)30083-2
39. Gu J., Han B., Wang J. COVID-19: Gastrointestinal manifestations and potential fecal-oral transmission. Gastroentyrology. 2020; 158(6): 1518-9. doi: 10.1053/j.gastro.2020.02.054.
40. Xiao F., Tang M., Zheng X. et al. Evidence for gastrointestinal infection of SARS- CoV-2. Gastroenterology. 2020;158(6):1831-1833. doi: 10.1053/j.gastro.2020.02.055.
41. Wander P., Epstein M., Bernstein D. COVID-19 presenting as acute hepatitis. Am.J. Gastroenterol. 2020. doi:10.14309/ajg.0000000000000660.
42. Boettler T., Newsome P.N., Mondelli M.U. et. al. Care of patients with liver disease during the COVID-19 pandemic: EASL-ESCMID position paper, JHEP Reports. 2020. doi: org/10.1016/j.jhepr.2020.100113.
43. Lleo A., Invernizzi P., Lohse A.W. et al. Highlights for management of patients with Autoimmune Liver Disease during COVID-19 pandemia. J. Hepat. 2020. pii: S0168-8278(20)30212-9. doi: 10.1016/j.jhep.2020.04.002.
44. Ji D., Enqiang Qin E., Xu J. et al. Non-alcoholic fatty liver diseases in patients with COVID-19: A retrospective study. Journal of Hepatology. 2020. doi: https://doi.org/10.1016/j.jhep.2020.03.044.
45. Tapper E.B., Asrani S.K. The COVID-19 pandemic will have a long-lasting impact on the quality of cirrhosis care. J. Hepatol. 2020; pii: S0168-8278(20)30217-8. doi: 10.1016/j.jhep.2020.04.005.
46. Saigal S., Gupta S., Sudhindran S. et al. Guidelines: Liver transplantation and COVID-19 (Coronavirus) infection: guidelines of the liver transplant Society of India (LTSI). Hepatol. Int. 2020. doi: 10.1007/s12072-020-10041-1.
47. Bhimraj A.,Morgan R.L., Shumaker A.H. et al. Infectious Diseases Society of America Guidelines on the Treatment and Management of Patients With COVID-19. Clin. Infect. Dis. 2020; pii: 5825667. doi: 10.1093/cid/ciaa478.
48. Falcao M.B., de Goes Cavalcanti L.P., Filho N.M. F. et al. Case Report: Hepatotoxicity Associated With the Use of Hydroxychloroquine in a Patient With Novel Coronavirus Disease (COVID-19). Am.J. Trop. Med. Hyg. 2020. doi: 10.4269/ajtmh.20-0276.
49. Sunkara B., Roofeh D., Silver S. et al. The devil's in the dosing: severe drug-induced liver injury in a hydroxychloroquine-naive patient with subacute cutaneous lupus erythematosus and porphyria cutanea tarda. Lupus. 2018;27(8):1383-6. doi: 10.1177/0961203318768884.
50. Makin A.J., Wendon J., Fitt S. et al. Fulminant hepatic failure secondary to hydroxychloroquine. Gut. 1994;35(4):569-70. doi: 10.1136/gut.35.4.569.
51. Wei C.H., Penunuri A., Karpouzas G. Troxis necrosis, a novel mechanism for druginduced hepatitis secondary to immunomodulatory therapy. Exp. Mol. Pathol. 2015;99(2):341-3. doi: 10.1016/j.yexmp.2015.08.006.
52. van den Broek M.P, H., Mohlmann J.E., Abeln B.G. S. et al. Chloroquine-induced QTc prolongation in COVID-19 patients. Neth. Heart. J. 2020. doi: https://doi.org/10.1007/s12471-020-01429-7.
53. Evaluating the drug-drug interaction risk of experimental COVID-19 therapies. [Electronic resource]. URL: https://www.covid19-druginteractions.org (date of the application: 30.04.2020)
54. Короновирус в России и в мире. [Electronic resource]. URL: https://www.5-tv.ru/news/294861/koronavirus-vrossii-imire-aktualnye-dannye-na4maa/?utm_source=yxnews&utm_medium=desktop&utm_referrer=https%3A%2F%2Fyandex.ru%2Fnews (date of the application: 04.05.2020) [In Russian]
55. Sanders J.M., Monogue M.L., Jodlowsk T.Z. et al. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19) A Review. JAMA. 2020. doi: https://jamanetwork.com/on 05/01/2020.
56. Petherick A. Developing antibody tests for SARS-CoV-2. Lancet. 2020;395(10230):1101-2. doi: 10.1016/S0140-6736(20)30788-1.
57. Roback J.D., Guarner J. Convalescent Plasma to Treat COVID-19 Possibilities and Challenges. JAMA. 2020. doi: 10.1001/jama.2020.4940.
58. Lodder W., de Roda Husman A.M. SARS-CoV-2 in wastewater: potential health risk, but also data source. Lancet Gastroenterol. Hepatol. 2020. doi: https://doi.org/10.1016/S2468-1253(20)30087-X.
59. Vaccine development. Medvestnik. [Electronic resource]. URL: medvestnik.ru>chronicles/Razrabotka-vakcin.html (date of the application: 01.05.2020)
Review
For citations:
Ilchenko L.Yu., Nikitin I.G., Fedorov I.G. COVID-19 and Liver Damage. The Russian Archives of Internal Medicine. 2020;10(3):188-197. https://doi.org/10.20514/2226-6704-2020-10-3-188-197