Preview

The Russian Archives of Internal Medicine

Advanced search

Damage of the Muscle System in Covid-19

https://doi.org/10.20514/2226-6704-2021-11-2-146-153

Abstract

Статья посвящена поражению мышечной системы при новой коронавирусной инфекции (COVID-19). Проведен анализ литературы российских и иностранных исследователей по внелегочным проявлениям COVID-19. Главной мишенью COVID-19 (Corona Virus Disease 2019) является эндотелий сосудов. Для проникновения в клетки вирус использует рецептор — ангиотензинпревращающий фермент 2 (АПФ2). Показано, что к одной мишени могут присоединиться до трех вирусов. В скелетной мускулатуре также имеется АПФ2. При COVID-19 вовлечение в патологический процесс мышечной системы является предиктором неблагоприятного прогноза. В 20 % случаев среди госпитализированных пациентов COVID-19 выявляются лабораторные признаки повреждения сердечной мышцы. К основным механизмам повреждения мышечной системы при COVID-19 относятся АПФ2-зависимый механизм, степень вирусной нагрузки, цитокиновый шторм, острая гипоксемия и лекарственная токсичность. Поражение мышечной системы при COVID-19 служит дополнительным фактором риска смерти. В представленной работе приводятся сведения о возможных патогенетических механизмах развития миопатии, а также мышечной слабости при COVID-19, протекающие с повышением содержания креатинкиназы крови.

About the Authors

I. T. Murkamilov
I.K. Akhunbaev Kyrgyz State Medical Academy; SEI HPE Kyrgyz Russian Slavic University
Kyrgyzstan

Ilkhom T. Murkamilov

Bishkek



K. A. Aitbaev
Scientific and research Institute of molecular biology and medicine
Kyrgyzstan

Bishkek



I. O. Kudaibergenova
SEI HPE Kyrgyz Russian Slavic University
Kyrgyzstan

Bishkek



V. V. Fomin
I.M. Sechenov First Moscow State Medical University
Russian Federation

Moscow



Zh. A. Murkamilova
SEI HPE Kyrgyz Russian Slavic University
Kyrgyzstan

Bishkek



F. A. Yusupov
Osh State University
Kyrgyzstan

Osh



References

1. Bukhari Q., Jameel Y., Massaro J.M. et al. Periodic Oscillations in Daily Reported Infections and Deaths for Coronavirus Disease 2019. JAMA Network Open. 2020; 3:8:С.e2017521-e2017521. doi:10.1001/jamanetworkopen.2020.17521

2. Ilchenko L.Yu., Nikitin I.G., Fedorov I.G. COVID-19 and Liver Damage. The Russian Archives of Internal Medicine. 2020;10(3):188-197. https://doi.org/10.20514/2226-6704-2020-10-3-188-197 [In Russian].

3. Petrovichev V.S., Melekhov A.V., Sayfullin M.A., Nikitin I.G. The Role of Computed Tomography in Differentiation of Coronavirus Pneumonia, its Complications and Comorbidities. Case Reports. The Russian Archives of Internal Medicine. 2020;10(5):357-371. https://doi.org/10.20514/2226-6704-2020-10-5-357-371 [In Russian].

4. Nikiforov V.V., Suranova T.G., Chernobrovkina T.Yu., Yankovskaya Y.D., Burova S.V. New Coronavirus Infection (COVID-19): Clinical and Epidemiological Aspects. The Russian Archives of Internal Medicine. 2020;10(2):87-93. https://doi.org/10.20514/2226-6704-2020-10-2-87-93 [In Russian].

5. Dvornikov A.S., Silin A.A., Gaydina T.A., et al. The Dermatological Manifestations in the Coronavirus Infection COVID-19. The Russian Archives of Internal Medicine. 2020;10(6):422-429. https://doi.org/10.20514/2226-6704-2020-10-6-422-429 [In Russian].

6. Sabirov I.S., Murkamilov I.T., Fomin V.V. Hepatobiliary system and novel coronavirus infection (COVID-19).The Scientific Heritage. 2020; 56-2(56): 52-58.DOI:10.24412/9215-0365-2020-56-2-52-58. [In Russian].

7. Sabirov I.S., Murkamilov I.T., Fomin V.V. Clinical and pathogenetic aspects of damage to the cardiovascular system in a new coronavirus infection (COVID-19). The Scientific Heritage. 2020;53-1:53:10-20. [In Russian].

8. Tai W., He L., Zhang X. et al. Characterization of the receptorbinding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell. Mol. Immunol. 2020; 17: 613–620 doi:10.1038/s41423-020- 0400-4.

9. Mao L., Wang M., Chen S., et al. Neurological Manifestations of Hospitalized Patients with COVID-19 in Wuhan, China. JAMA Neurol. 2020; 77(6): 683-690.doi: 10.1001/jamaneurol.2020.1127.

10. Fisun A.Y., Cherkashin D.V., Tyrenko V.V., et al. Role of reninangiotensin- aldosterone system in the interaction with coronavirus SARS-CoV-2 and in the development of strategies for prevention and treatment of new coronavirus infection (COVID-19). «Arterial’naya Gipertenziya» («Arterial Hypertension»). 2020; 26(3): 248-262. https://doi.org/10.18705/1607-419X-2020-26-3-248-262 [In Russian].

11. Sapin M.R. Human Anatomy In 2 volumes. T. 1: textbook / M.R.Sapin and others; ed. M.R.Sapin. — M.: GEOTAR-Media, 2015 .— 528 p. — ISBN 978-5-9704-3483-3. [In Russian].

12. Chesnokova N.P., Ponukalina E.V., Morrison V.V., Bizenkova M.N. Lecture 4. Physiology of transport of gases by blood and oxygen supply of tissues. Scientific Review. Medical sciences. 2017; 2: 40-42. [In Russian].

13. Zverev A.A., Anikina T.A., Krylova A.V., Zefirov T.L. Physiology of muscles: teaching aid for students. higher. educational institutions. Kazan, Kazan Federal University, 2016. 41 p. [In Russian].

14. Litvinenko I.V., Zhivolupov S.A., Bardakov S.N., et al. Inflammatory myopathies: pathogenesis, clinical presentation, diagnosis, treatment. Vestnik of Russian military medical Academy. 2015; 3(51): 217-226. [In Russian].

15. Murkamilov I.T. Cases of chronic polymositis with Reyno syndrome. Medical & pharmaceutical journal «Pulse». 2019; 21:8: 37-41. [In Russian].

16. Antelava O.A. Polymyositis/dermatomiositis: differential diagnosis. Rheumatology Science and Practice. 2016; 54(2): 191-198. https://doi.org/10.14412/1995-4484-2016-191-198[In Russian].

17. Hoek F.J., Kemperman F.A., Krediet R.T. A comparison between cystatin C, plasma creatinine and the Cockcroft and Gault formula for the estimation of glomerular fi ltration rate. Nephrol. Dial. Transplant. 2003; 18(10): 2024–2031. doi:10.1093/ndt/gfg349.

18. KDIGO 2012 Clinical Pracice Guidelines for the Evaluaion and Management of Chronic Kidney Disease. Kidney Int. 2013; 3(1): 1–163.

19. Kakorin S.V., Bylova N.A. A clinical case of a high level of creatine phosphokinase. The Russian Archives of Internal Medicine. 2015; (2): 62-64. https://doi.org/10.20514/2226-6704-2015-0-2-62-64 [In Russian].

20. Kamyshnikov V.S. Reference book on clinical and biochemical research and laboratory diagnostics. M .: MEDpress-inform. 2009; 896 p.

21. Lim A.K., Arumugananthan C., Lau Hing Yim C. et al. A cross-sectional study of the relationship between serum creatine kinase and liver biochemistry in patients with rhabdomyolysis.Journal of clinical medicine. 2020; 9:1:С.81. doi:10.3390/jcm9010081

22. Bäcker H.C., Busko M., Krause F.G. et al. Exertional rhabdomyolysis and causes of elevation of creatine kinase.The Physician and sportsmedicine. 2020; 48:2:179-185. doi:10.1080/00913847.2019.1669410

23. Agraz-Pamplona I., Larrosa-Garcia M., Bury-Macias R.P. et al. Case report: tolvaptan-associated creatine kinase elevation in two patients with autosomal dominant polycystic kidney disease (ADPKD). European Journal of Clinical Pharmacology. 2020; 76: 1473–1475

24. Rosenson R.S., Baker S.K., Jacobson T.A. et al. An assessment by the statin muscle safety task force: 2014 update. Journal of clinical lipidology. 2014; 8(3): 58-71. doi:10.1016/j.jacl.2014.03.004

25. Collins R., Reith C., Emberson J. et al. Interpretation of the evidence for the efficacy and safety of statin therapy.The Lancet. 2016; 388(10059): 2532-2561. doi:10.1016/S0140-6736(16)31357-5

26. Drapkina O.M., Chernova E.M., Korneeva O.N. Statins and myopathy: molecular mechanisms. Rational Pharmacotherapy in Cardiology. 2012; 8(3): 469-473. doi:10.20996/1819-6446-2012-8-3-469-473 [In Russian].

27. Ruzhentsova T.A., Mileykova E.I., Mozhenkova A.V. et al. Role of increase of MB-creatine kinase in different extracardiac pathologies. Lechaschi Vrach. 2018; 10: 80-83. [In Russian].

28. Bagnato S., Boccagni C., Marino G. et al. Critical illness myopathy after COVID-19. International Journal of Infectious Diseases. 2020; 99: 276-278. doi:10.1016/j.ijid.2020.07.072

29. Finsterer J., Scorza F.A. SARS-CoV-2-associated critical ill myopathy or pure toxic myopathy? International Journal of Infectious Diseases. 2020; 101:56. doi:10.1016/j.ijid.2020.09.1463

30. Hsueh S.J., Lee M.J., Chen H.S. et al. Myopathy associated with COVID-19. J Formos Med Assoc. 2020; S0929-6646(20)30354-5. doi:10.1016/j.jfma.2020.07.042

31. Chang K.C. Response to the letter “Does SARS-CoV-2 truly cause infectious myopathy?”. J Formos Med Assoc. 2020; S0929-6646(20)30420-4. doi:10.1016/j.jfma.2020.08.046

32. Vacchiano V., Riguzzi P., Volpi L. et al. Early neurological manifestations of hospitalized COVID-19 patients.Neurol Sci. 2020; 41(8): 2029–2031.doi:10.1007/s10072-020-04525-z

33. Jin M., Tong Q. Rhabdomyolysis as potential late complication associated with COVID-19. Emerg Infect Dis. 2020; 26(7): 1618-1620. doi:10.3201/eid2607.200445

34. Zhang H., Charmchi Z., Seidman R.J. et al. COVID-19 associated myositis with severe proximal and bulbar weakness. Muscle Nerve. 2020; 62(3):E57-E60. doi:10.1002/mus.27003

35. Suwanwongse K., Shabarek N. Rhabdomyolysis as a presentation of 2019 novel coronavirus disease. Cureus. 2020; 12(4):e7561. doi:10.7759/cureus.7561

36. Oddis C.V., Aggarwal R. Treatment in myositis.Nature Reviews Rheumatology. 2018; 14:5:279-289. doi:10.1038/nrrheum.2018.42

37. Pipitone N., Salvarani C. Up-to-date treatment and management of myositis. Current Opinion in Rheumatology. 2020; 32:6:523-527. doi:10.1097/BOR.0000000000000745


Review

For citations:


Murkamilov I.T., Aitbaev K.A., Kudaibergenova I.O., Fomin V.V., Murkamilova Zh.A., Yusupov F.A. Damage of the Muscle System in Covid-19. The Russian Archives of Internal Medicine. 2021;11(2):146-153. https://doi.org/10.20514/2226-6704-2021-11-2-146-153

Views: 2588


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-6704 (Print)
ISSN 2411-6564 (Online)