Clinical Masks of Neurofibromatosis Type 1
https://doi.org/10.20514/2226-6704-2021-12-2-93-103
Abstract
Neurofibromatosis type 1 is the most common autosomal dominant tumor syndrome. The prevalence of the disease is 1 in 3000 people. Neurofibromatosis type 1 is characterized by the gradual appearance of signs of the disease and pronounced clinical polymorphism from erased and atypical forms to severe classical manifestations. The review is devoted to the consideration of diseases, the manifestations of which are significantly similar to neurofibromatosis type 1, and therefore, molecular diagnosis of the disease is an important method for differential diagnosis. To make a diagnosis of neurofibromatosis type 1, it is necessary to find mutations in the NF1 gene using sequencing. In 10% of cases, neurofibromatosis type 1 is caused by large deletions of the 17q11.2 locus, therefore, multiplex ligation-dependent probe amplification is also necessary. Typically, the initial manifestations of neurofibromatosis type 1 are multiple café-au-lait spots, which may be the only external signs of the disease for many years. Therefore, patients with neurofibromatosis type 1 may be mistakenly diagnosed with diseases for which these pigmentary changes are characteristic: Bloom, LEOPARD, Carney, Costello, Cowden, Legius, Nijmegen, Noonan, Peitz-Jägers, Silver-Russell, cardio-facio-cutaneous syndromes. The detection of subcutaneous tumors can become the basis for an incorrect diagnosis of the clinically similar Legius syndrome and multiple endocrine neoplasia. In addition, multiple lipomas are specific manifestations of Madelung or Dercum lipomatosis, familial angiolipomatosis, the etiology of which is considered unknown. Therefore, I assume that these diseases are atypical forms of neurofibromatosis type 1, since a number of authors have described the identification of mutations in NF1 gene in patients with multiple lipomatosis. Therefore, it is important to widely introduce into clinical practice the possibility of molecular genetic identification of the disease in order to identify cases of neurofibromatosis type 1 that do not meet the diagnostic criteria adopted by the NIH. It is promising to create a panel for the study of all genes, mutations in which can cause manifestations similar to neurofibromatosis. Early diagnosis of the disease is necessary for timely initiation of treatment and prevention of severe manifestations, since effective methods of antitumor therapy of neurofibromatosis type 1, such as inhibitors of mitogen-activated kinase, are being introduced into clinical practice.
About the Author
R. N. MustafinRussian Federation
Ufa
Competing Interests:
The authors declare no conflict of interests
References
1. Koczkowska M., Callens T., Gomes A. et al. Expanding the clinical phenotype of individuals with a 3-bp in-frame deletion of the NF1 gene (c.2970_2972del): and update of genotype-phenotype correlation. Genet Med. 2019; 21(4): 867-876. doi: 10.1038/s41436-018-0326-8.
2. Barrea C., Vaessen S., Bulk S. et al. Phenotype-Genotype Correlation in Children with Neurofibromatosis Type 1. Neuropediatrics. 2018; 49(3): 180-184. doi: 10.1055/s-0037-1620239.
3. Rojnueangnit K., Xie J., Gomes A. et al. High Incidence of Noonan Syndrome Features Including Short Stature and Pulmonic Stenosis in Patients carrying NF1 Missense Mutations Affecting p.Arg1809: Genotype-Phenotype Correlation. Hum Mutat. 2015; 36(11): 105263. doi: 10.1002/humu.22832.
4. Ratner N., Miller S.J. A RASopathy gene commonly mutated in cancer: the neurofibromatosis type 1 tumour suppressor. Nat Rev Cancer. 2015; 15(5): 290-301. doi: 10.1038/nrc3911.
5. Upadhyaya M., Huson S.M., Davies M. et al. An absence of cutaneous neurofibromas associated with a 3-bp inframe deletion in exon 17 of the NF1 gene (c.2970-2972 delAAT): evidence of a clinically significant NF1 genotype-phenotype correlation. The American Journal of Human Genetics. 2007; 80: 140–151. doi: 10.1086/510781.
6. Quintans B., Pardo J., Campos B. et al. Neurofibromatosis without Neurofibromas: Confirmation of a Genotype-Phenotype Correlation and Implications for Genetic Testing. Case Rep Neurol 2011; 3(1):86-90. doi: 10.1159/000327557.
7. Buki G., Zsigmond A., Czako M. et al. Genotype-Phenotype Associations in Patients with Type-1, Type-2, and Atypical NF1 Microdeletions. Front. Genet. 2021; 12: 673025. doi: 10.3389/fgene.2021.673025.
8. Galbiati M., Lettieri A., Micalizzi C. et al. Natural history of acute lymphoblastic leukemia in neurofibromatosis type 1 monozygotic twins. Leukemia. 2013; 27(8): 1778-81. doi: 10.1038/leu.2013.55.
9. Tabata M.M., Li S., Knight P. et al. Phenotypic heterogeneity of neurofibromatosis type 1 in a large international registry. J Cl Insight 2020; 5(16): e136262. doi: 10.1172/jci.insight.136262.
10. Yu Y., Choi K., Wu J. et al. NF1 patient missense variants predict a role for ATM in modifying neurofibroma initiation. Acta Neuropathol 2020; 139(1): 157-174. doi: 10.1007/s00401-019-02086-w.
11. Beert E., Brems H., Daniels B. et al. Atypical neurofibromas in neurofibromatosis type 1 are premalignant tumors. Genes Chromosomes Cancer. 2011; 50(12): 1021-32. doi: 10.1002/gcc.20921.
12. Lalor L., Davies O.M., Basel D. et al. Café au lait spots: When and how to pursue their genetic origins. Clin. Dermatol. 2020; 38: 421-431. doi: 10.1016/j.clindermatol.2020.03.005.
13. Ruggieri M., Pratico A.D., Serra A. et al. Childhood neurofibromatosis type 2 (NF2) and related disorders: from bench to bedside and biologically targeted therapies. Acta Otorhinolaryngol. Ital. 2016; 36(5): 345-367. doi: 10.14639/0392-100X-1093.
14. Sumner K., Crockett D.K., Muram T. et al. The SPRED1 Variants Repository for Legius Syndrome. G3 (Bethasda). 2011; 1(6): 451-6. doi: 10.1534/ g3.111.000687.
15. Yue X., Zhao X., Dai Y. et al. Leopard syndrome: the potential cardiac defect underlying skin phenotypes. Hereditas. 2021; 158(1): 34. doi: 10.1186/s41065-021-00199-5.
16. Karalis A., Tischkowitz M., Millington G.W.M. Dermatological manifestations of inherited cancer syndromes in children. Br. J. Dermatol. 2011; 164: 245-256. doi: 10.1111/j.1365-2133.2010.10100.x.
17. Kuhlen M., Borkhardt A. Cancer susceptibility syndromes in children in the area of broad clinical use of massive parallel sequencing. Eur. J. Pediatr. 2015; 174(8): 987-97. doi: 10.1007/s00431-015-2565-x.
18. Baris H.N., Barnes-Kedar I., Toledano H. et al. Constitutional Mismatch Repair Deficiency in Israel: High Proportion of Founder Mutations in MMR Genes and Consanguinity. Pediatr. Blood Cancer. 2016; 63(3): 418-27. doi: 10.1002/pbc.25818.
19. Yotsumoto Y., Harada A., Tsugawa J. et al. Infantile macrocephaly and multiple subcutaneous lipomas diagnosed with PTEN hamartoma tumor syndrome: A case report. Mol. Clin. Oncol. 2020; 12: 329-335. doi: 10.3892/mco.2020.1988.
20. Dos Santos A.C.E., Heck B., Camargo B.D., et al. Prevalence of Caféau-Lait Spots in children with solid tumors. Genet. Mol. Biol. 2016; 39: 232-8. doi: 10.1590/1678-4685-GMB-2015-0024.
21. Greenberger S., Berkun Y., Ben-Zeev B. et al. Dermatologic manifestations of ataxia-telangiectasia syndrome. J. Am. Acad. Dermatol. 2013; 68: 932-6. doi: 10.1016/j.jaad.2012.12.950.
22. Ehninger D., Silva A. Rapamycin for treating Tuberous Sclerosis and Autism Spectrum Disorders. Trends Mol Med. 2011; 17: 78-87.
23. Luk H.M., Yeung K.S., Wong W.L. et al. Silver-Russell syndrome in Hong Kong. Hong Kong Med. J. 2016; 22: 526-33. doi: 10.12809/hkmj154750.
24. Takenouchi T., Shimizu A., Torii C. et al. Multiple café au lait spots in familial patients with MAP2K2 mutation. Am. J. Med. Genet. 2014; 164A: 392-6.
25. Bettegowda C., Upadhayaya M., Evans D.G. et al. Genotype-Phenotype Correlations in Neurofibromatosis and Their Potential Clinical use. Neurology 2021; 10.1212/WNL. 0000000000012436.
26. Portocarrero L.K.L., Quental K.N., Samorano L.P. et al. Tuberous sclerosis complex: review based on new diagnostic criteria. An. Bras. Dermatol. 2018; 93: 323-331. doi: 10.1590/abd1806-4841.20186972.
27. Batyushin M.M., Pasechnik A.V., Sadovnichaya N.A. Multiple lipomatosis (Madelung’s disease) and kidney injury. Two clinical cases. Nephrologiya. 2013; 17(5): 89-95. DOI: 10.24884/1561-6274-2013-17-5-89-95 [In Russian].
28. Sawyer S.L., Ng A.C-H., Innes A.M. et al. Homozygous mutations in MFN2 cause multiple symmetric lipomatosis associated with neuropathy. Hum. Mol. Genet. 2015; 24(18): 5109-14. doi: 10.1093/hmg/ddv229.
29. Liu Q., Lyu H., Xu B. et al. Madelung Disease Epidemiology and Clinical Characteristics: a Systemic Review. Aesthetic Plast Surg. 2021; 45(3): 977-986.
30. Hasbani G.E., Assaker R., Nithsoontorn S. et al. Madelung’s Disease Leading to Presenile Dementia in a Non-alcoholic Patient. Med. Arch. 2019; 73(4): 285-287. doi: 10.5455/medarh.2019.73.285-287.
31. Hansson E., Svensson H., Brorson H. Review of Dercum’s disease and proposal of diagnostic criteria, diagnostic methods, classification and management. Orphanet J Rare Dis. 2012; 7: 23. doi: 10.1186/17501172-7-23.
32. Maheshwari S., Arora E.L. Exploring a Tumor Spectrum in Patient with Familial Angiolipmatosis. Asian J. Neurosurg. 2019; 14(3): 886-889. doi: 10.4103/ajns.AJNS_295_17.
33. Garib G., Siegal G.P., Andea A.A. Autosomal-dominant familial angiolipomatosis. Cutis. 2015; 95: E26–29.
34. Beltran K., Herbst K.L. Differentiating lipedema and Dercum’s disease. Int. J. Obes. (Lond). 2017; 41: 240–245. doi: 10.1038/ijo.2016.205.
35. Herbst K.L., Feingold K.R., Anawalt B. et al. Subcutaneous Adipose Tissue Diseases: Dercum Disease, Lipedema, Familial Multiple Lipomatosis, and Madelung Disease. 2019. Endotext (Internet). PMID: 31895524. Bookshelf ID: NBK552156.
36. Wei C.J., Gu S.C., Ren J.Y. et al. The impact of host immune cells on the development of neurofibromatosis type 1: The abnormal immune system provides an immune microenvironment for tumorigenesis. Neurooncol. Adv. 2019; 1(1): vdz037. doi: 10.1093/noajnl/vdz037.
37. Ware R., Mane A., Saini S. et al. Familial multiple lipomatosis—a rare syndrome diagnosed on FNAC. International Journal of Medical Science and Public Health. 2016; 5: 367–369.
38. Genuardi M., Klutz M., Devriendt K. et al. Multiple lipomas linked to an RB1 gene mutation in a large pedigree with low penetrance retinoblastoma. Eur J Hum Genet. 2001; 9: 690–694. doi: 10.1038/sj.ejhg.5200694.
39. Morelli A., Falchetti A., Weinstein L. et al. RFLP analysis of human chromosome 11 region q13 in multiple symmetric lipomatosis and multiple endocrine neoplasia type 1-associated lipomas. Biochem Biophys Res. Commun. 1995; 207:363-368. doi: 10.1006/bbrc.1995.1196.
40. Oktenli C., Gul D., Deveci M.S. et al. Unusual features in a patient with neurofibromatosis type 1: multiple subcutaneous lipomas, a juvenile polyp in ascending colon, congenital intrahepatic portosystemic venous shunt, and horseshoe kidney. Am. J. Med. Genet. A. 2004; 127: 298–301. doi: 10.1002/ajmg.a.30008.
41. Lee C.H., Spence R.A.J., Upadhyaya M., et al. Familial multiple lipomatosis with clear autosomal dominant inheritance and onset in early adolescence. B.M.J. Case Rep. 2011; 2011: bcr1020103395. doi: 10.1136/bcr.10.2010.3395.
42. Lee S., Bak H., Ahn S.K. Liponeurofibroma: Clinicopathological features and histogenesis. J Dermatol. 2018; 45(4): 416-424. doi: 10.1111/1346-8138.14238.
43. Miettinen M.M., Antonescu C.R., Fletcher C.D.M. et al. Histopathologic evaluation of atypical neurofibromatous tumors and their transformation into malignant peripheral nerve sheath tumor in patients with neurofibromatosis 1 — a consensus overview. Hum Pathol 2017; 67: 1-10. doi: 10.1016/j.humpath.2017.05.010.
44. Miraglia E., Fino P., Lopez T. et al. Multiple lipomas in a patient with Neurofibromatosis Type 1. G Ital Dermatol Venereol. 2019; 154(6): 734-735. doi: 10.23736/S0392-0488.18.05869-8.
45. Miraglia E., Calvieri S., Giustini S. Lipomas in neurofibromatosis type 1: a single-institution experience. G Ital Dermatol Venereol. 2020; 155(3): 375-376. doi: 10.23736/S0392-0488.18.06044-3.
46. Ramirez E., Morris S.M., Turner T.N., et al. Familial Lipomas Without Classic Neurofibromatosis-1 Caused by a Missense Germline NF1 Mutation. Neurol Genet 2021; 7(3): e582. doi: 10.1212/NXG.0000000000000582.
47. Koczkowska M., Callens T., Chen Y. et al. Clincal spectrum of individuals with pathogenic NF1 missense variants affecting p.Met1149, p.Arg1276, and p.Lys1423: genotype-phenotype study in neurofibromatosis type 1. Hum Mutat 2020; 41(1): 299-315. doi: 10.1002/humu.23929.
48. Trevisson E., Morbidoni V., Forzan M. et al. The Arg1038Gly missense variant in the NF1 gene causes a mild phenotype without neurofibromas. Mol Genet Genomic Med 2019; 7(5): e616. doi: 10.1002/mgg3.616.
49. Upadhyaya M., Spurlock G., Kluwe L. et al. The spectrum of somatic and germline NF1 mutations in NF1 patients with spinal neurofibromas. Neurogenetics 2009; 10(3): 251-63. doi: 10.1007/s10048-009-0178-0.
50. Pinna V., Lanari V., Daniele P. et al. p.Arg1809Cys substitution in neurofibromin is associated with a distinctive NF1 phenotype without neurofibromas. Eur J Hum Genet 2015; 23: 1068-1071. doi: 10.1038/ejhg.2014.243.
51. Rahal N., Sadi A., Cohen-Barak E. et al. LEOPARD syndrome: A report of a case with a novel PTPN11 mutation. JAAD Case Rep 2021; 11: 57-59. doi: 10.1016/j.jdcr.2021.03.022.
52. Kang E., Kim Y.M., Seo G.H. et al. Phenotype categorization of neurofibromatosis type 1 and correlation to NF1 mutation types. J Hum Genet. 2020; 65(2): 79-89. doi: 10.1038/s10038-019-0695-0.
53. Pasmant E., Sabbagh A., Masliah-Planchon J. et al. Role of noncoding RNA ANRIL in genesis of plexiform neurofibromas in neurofibromatosis type 1. J Natl Cancer Inst 2011; 103(22): 1713-22. doi: 10.1093/jnci/djr416.
54. Sharafi P., Ayter S. Possible modifier genes in the vatiration of neurofibromatosis type 1 clinical phenotypes. J Neurogenet 2018;32(2):65-77. doi: 10.1080/01677063.2018.1456538.
55. Robinson J.T. Integrative genomics viewer. Nat. Biotechnol. 2011; 29: 24-26. doi: 10.1038/nbt.1754.
56. Tsipi M., Poulou M., Fylaktou I. et al. Phenotypic expression of a spectrum of Neurofibromatosis Type 1 (NF1) mutations identifies through NGS and MLPA. J. Neurol. Sci. 2018; 395: 95-105. doi: 10.1016/j.jns.2018.10.006.
57. Coffa J., van den Berg J. Analysis of MLPA data using novel software coffalyser.NET by MRC-Holland. Modern Approaches To Quality Control. 2011; 125-150.
58. Walker J.A., Upadhyaya M. Emerging therapeutic targeting for neurofibromatosis. Expert. Opin. Ther. Targets. 2018; 22(5): 419-437. doi: 10.1080/14728222.2018.1465931.
59. Keeling K.M., Xue X., Gunn G., et al. Therapeutics based on stop codon readthrough. Annu. Rev. Genomics. Hum. Genet. 2014; 15: 371-394. doi: 10.1146/annurev-genom-091212-153527.
60. Crawford D.K., Mullenders J., Pott J. et al. Targeting G542X CFTR nonsense alleles with ELX-02 restores CFTR function in humanderived intestinal organoid. J. Cyst. Fibros. 2021; 20(3): 436-442. doi: 10.1016/j.jcf.2021.01.009.
61. Lee M.J., Hung S.H., Huang M.C. et al. Doxycycline potentiates antitumor effect of 5-aminolevulinic acid-mediated photodynamic therapy in malignant peripheral nerve sheath tumor cells. PLoS One. 2017; 12(5): e0178493. doi: 10.1371/journal.pone.0178493.
62. Brosseau J.P., Liao C.P., Le L.Q. Translating current basic research into future therapies for neurofibromatosis type 1. Br. J. Cancer. 2020; 123: 178-186. doi: 10.1038/s41416-020-0903-x.
63. Galvin R., Watson A.L., Largaespada D.A. et al. Neurofibromatosis in the Era of Precision Medicine: Development of MEK Inhibitors and Recent Successes with Selumetinib. Curr. Oncol. Rep. 2021; 23(4): 45. doi: 10.1007/s11912-021-01032-y.
64. Dombi E., Baldwin A., Marcus L. et al. Activity of Selumetinib in Neurofibromatosis Type1-Related Plexiform Neurofibromas. N. Engl. J. Med. 2016; 375(26): 2550-2560. doi: 10.1056/NEJMoa1605943.
65. Ahsan S., Ge Y., Tainsky M.A. Combinatorial therapeutic targeting of BMP2 and MEK-ERK pathways in NF1-associated malignant peripheral nerve sheath tumors. Oncotarget. 2016; 7(35): 57171-57185. doi: 10.18632/oncotarget.11036.
66. Baldo F., Grasso A.G., Wiel L.C. et al. Selumetinib in the Treatment of Symptomatic Intractable Plexiform Neurofibromas in Neurofibromatosis Type 1: A Prospective Case Series with Emphasis on Side Effects. Paediatr. Drugs. 2020; 22(4): 417-423. doi: 10.1007/s40272-020-00399-y.
67. Santo V.E., Passos J., Nzwalo H. et al. Selumetinib for plexiform neurofibromas in neurofibromatosis type 1: a singleinstitution experience. J. Neurooncol. 2020; 147(2): 459-463. doi: 10.1007/s11060-020-03443-6.
68. Gross A.M., Wolters P.L., Dombi E. et al. Selubetinib in Children with Inoperable Plexiform Neurofibromas. N. Engl. J. Med. 2020; 382(15): 1430-1442. doi: 10.1056/NEJMoa1912735.
69. Fangusaro J., Onar-Thomas A., Poussaint T.Y. et al. Selumetinib in paediatric patients with BRAF-aberrant or neurofibromatosis type-1associated recurrent, refractory, or progressive low-grade gliomas: a multicentre, phase 2 trial. Lancet Oncol. 2019; 20(7): 1011-1022. doi: 10.1016/S1470-2045(19)30277-3.
70. Jackson S., Baker E.H., Gross A.M. et al. The MEK inhibitor selumetinib reduces spinal neurofibroma burden in patients with NF1 and plexiform neurofibromas. Neurooncol. Adv. 2020; 2(1): vdaa095. doi: 10.1093/moajnl/vdaa095.
71. Bai R.Y., Esposito D., Tam A.J. et al. Feasibility of using NF1GRD and AAV for gene replacement therapy in NF1-associated tumors. Gene Ther. 2019; 26(6): 277-286. doi: 10.1038/s41434019-0080-9.
72. Cui X.W, Ren J.Y., Gu Y.H. et al. NF1, Neurofibromin and Gene Therapy: Prospects of Next-Generation Therapy. Curr. Gene Ther. 2020; 20(2): 100-108. doi: 10.2174/1566523220666200806111451.
Review
For citations:
Mustafin R.N. Clinical Masks of Neurofibromatosis Type 1. The Russian Archives of Internal Medicine. 2022;12(2):93-103. https://doi.org/10.20514/2226-6704-2021-12-2-93-103