Pathophysiological Prerequisites and Therapeutic Potential of Fecal Microbiota Transplantation in Severe Alcoholic Hepatitis
https://doi.org/10.20514/2226-6704-2022-12-5-352-362
Abstract
Due to the high morbidity and mortality, the problem of severe alcoholic hepatitis has not lost its relevance to date. In the absence of specific therapy, the associated to him one-month survival rate is low, and mortality rates reach 30-50 %. Although the use of corticosteroids is a scientifically proven first-line treatment for severe alcoholic hepatitis, a short-term response is observed in approximately 60 % of patients with no long-term survival benefits compared to placebo. It should also take into account the occurrence of adverse side reactions to their use in about 50 % of patients, as well as the risk of complications, in particular, bacterial and fungal infections. The second-line drugs, for example, pentoxifylline, etanercept, infliximab, N-acetylcysteine, etc. in severe alcoholic hepatitis did not show an improvement in the clinical outcome. The modern guidelines discuss the feasibility of liver transplantation in carefully selected patients who do not respond to corticosteroid treatment with severe alcoholic hepatitis. Nevertheless, due to numerous contradictions, it is too early to talk about the introduction of this approach into clinical practice. In recent years, some progress has been made in understanding the pathophysiological mechanisms of the development of alcoholic hepatitis, which served as an impetus for new directions of its pathogenetic therapy. One of them is the techniques that provide intestinal eubiosis, in particular, through the fecal microbiota transplantation. The purpose of the review was to describe the pathophysiological prerequisites and therapeutic potential of fecal microbiota transplantation from healthy donors to patients with severe alcoholic hepatitis. Experimental studies have shown a positive effect of fecal microbiota transplantation on the intestinal microflora, which led to a weakening of alcohol-induced liver damage. In patients with severe alcoholic hepatitis, it improved the severity of its symptoms and contributed to increased survival compared to those receiving corticosteroids. These preliminary results are encouraging and create conditions for further clinical trials involving a large cohort of patients with severe alcoholic hepatitis, which will allow us to identify those for whom fecal microbiota transplantation will be most effective with minimal risk of complications.
About the Author
D. V. GarbuzenkoRussian Federation
Dmitry V. Garbuzenko
Chelyabinsk
Competing Interests:
The authors declare no conflict of interests
References
1. EASL Clinical Practice Guidelines: Management of alcohol-related liver disease. J Hepatol. 2018; 69(1): 154-181. https://doi.org/10.1016/j.jhep.2018.03.018
2. Parker R, Im G, Jones F, et al. Clinical and microbiological features of infection in alcoholic hepatitis: an international cohort study. J Gastroenterol. 2017; 52(11): 1192-1200. https://doi.org/10.1007/s00535-017-1336-z
3. Dugum M, McCullough A. Diagnosis and management of alcoholic liver disease. J Clin Transl Hepatol. 2015; 3(2): 109-116. https://doi.org/10.14218/JCTH.2015.00008
4. Ivashkin VT, Mayevskaya MV, Pavlov ChS, et al. Management of adult patients with alcoholic liver disease: clinical guidelines of the Russian Scientific Liver Society. Russian Journal of Gastroenterology Hepatology Coloproctology. 2017; 27(6): 20-40. https://doi.org/10.22416/1382-4376-2017-27-6-20-40 [in Russian]
5. Crabb DW, Im GY, Szabo G, et al. Diagnosis and Treatment of AlcoholAssociated Liver Diseases: 2019 Practice Guidance From the American Association for the Study of Liver Diseases. Hepatology. 2020; 71(1): 306-333. https://doi.org/10.1002/hep.30866
6. Pavlov CS, Varganova DL, Casazza G, et al. Glucocorticosteroids for people with alcoholic hepatitis (Cochrane review). Therapeutic Archive. 2019; 91(8): 52–66. https://doi.org/10.26442/00403660.2019.08.000354 [in Russian]
7. Saberi B, Dadabhai AS, Jang YY, et al. Current Management of Alcoholic Hepatitis and Future Therapies. J Clin Transl Hepatol. 2016; 4(2): 113-122. https://doi.org/10.14218/JCTH.2016.00006
8. Im GY, Cameron AM, Lucey MR. Liver transplantation for alcoholic hepatitis. J Hepatol. 2019; 70(2): 328-334. https://10.1016/j.jhep.2018.11.007
9. Philips CA, Augustine P, Yerol PK, et al. Severe alcoholic hepatitis: current perspectives. Hepat Med. 2019; 11: 97-108. https://doi.org/10.2147/HMER.S197933
10. Eiseman B, Silen W, Bascom G, et al. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery. 1958; 44(5): 854-859. PMID:13592638
11. Shasthry SM. Fecal microbiota transplantation in alcohol related liver diseases. Clin Mol Hepatol. 2020; 26(3): 294-301. https://doi.org/10.3350/cmh.2020.0057
12. Waller KMJ, Leong RW, Paramsothy S. An update on fecal microbiota transplantation for the treatment of gastrointestinal diseases. J Gastroenterol Hepatol. 2022; 37(2): 246-255. https://doi.org/10.1111/jgh.15731
13. Sung JJY, Wong SH. What is unknown in using microbiota as a therapeutic? J Gastroenterol Hepatol. 2022; 37(1): 39-44. https://doi.org/10.1111/jgh.15716
14. Iakupova АА, Abdulkhakov SR, Safin AG, et al. Fecal microbiota transplantation: donor selection criteria, storage and preparation of biomaterials (review of current recommendations). Terapevticheskii Arkhiv. 2021; 93(2): 215–221. https://doi.org/10.26442/00403660.2021.02.200615 [in Russian]
15. Tkach S, Dorofeyev A, Kuzenko I, et al. Current Status and Future Therapeutic Options for Fecal Microbiota Transplantation. Medicina (Kaunas). 2022; 58(1): 84. https://doi.org/10.3390/medicina58010084
16. Segal JP, Mullish BH, Quraishi MN, et al. Mechanisms underpinning the efficacy of faecal microbiota transplantation in treating gastrointestinal disease. Therap Adv Gastroenterol. 2020; 13: 1756284820946904. https://doi.org/10.1177/1756284820946904
17. Ivashkin VT, Ivashkin KV. Human microbiome, applied to clinical practice. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2017; 27(6): 4-13. https://doi.org/10.22416/1382-4376-2017-27-6-4-13 [in Russian]
18. Liu ZZ, Sun JH, Wang WJ. Gut microbiota in gastrointestinal diseases during pregnancy. World J Clin Cases. 2022; 10(10): 2976-2989. https://doi.org/10.1111/jgh.15716
19. Singal AK, Louvet A, Shah VH, et al. Grand Rounds: Alcoholic Hepatitis. J Hepatol. 2018; 69(2): 534-543. https://doi.org/10.1016/j.jhep.2018.05.001
20. Fung P, Pyrsopoulos N. Emerging concepts in alcoholic hepatitis. World J Hepatol. 2017; 9(12): 567-585. https://doi.org/10.4254/wjh.v9.i12.567
21. Fairfield B, Schnabl B. Gut dysbiosis as a driver in alcohol-induced liver injury. JHEP Rep. 2020; 3(2): 100220. https://doi.org/10.1016/j.jhepr.2020.100220
22. Turroni F, Ventura M, Buttó LF, et al. Molecular dialogue between the human gut microbiota and the host: a Lactobacillus and Bifidobacterium perspective. Cell Mol Life Sci. 2014; 71(2): 183-203. https://doi.org/10.1007/s00018-013-1318-0
23. Llopis M, Cassard AM, Wrzosek L, et al. Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease. Gut. 2016; 65(5): 830-839. https://doi.org/10.1136/gutjnl-2015-310585
24. Grander C, Adolph TE, Wieser V, et al. Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic liver disease. Gut. 2018; 67(5): 891-901. https://doi.org/10.1136/gutjnl-2016-313432
25. Lang S, Fairfied B, Gao B, et al. Changes in the fecal bacterial microbiota associated with disease severity in alcoholic hepatitis patients. Gut Microbes. 2020;12(1): 1785251. https://doi.org/10.1080/19490976.2020.1785251
26. Smirnova E, Puri P, Muthiah MD, et al. Fecal Microbiome Distinguishes Alcohol Consumption From Alcoholic Hepatitis But Does Not Discriminate Disease Severity. Hepatology. 2020; 72(1): 271-286. https://doi.org/10.1002/hep.31178
27. Yan AW, Fouts DE, Brandl J, et al. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology. 2011; 53(1): 96-105. https://doi.org/10.1002/hep.24018
28. Bjørkhaug ST, Aanes H, Neupane SP, et al. Characterization of gut microbiota composition and functions in patients with chronic alcohol overconsumption. Gut Microbes. 2019; 10(6): 663-675. https://doi.org/10.1080/19490976.2019.1580097
29. Duan Y, Llorente C, Lang S, et al. Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature. 2019; 575(7783): 505-511. https://doi.org/10.1038/s41586-019-1742-x
30. Sundaram V, May FP, Manne V, et al. Effects of Clostridium difficile infection in patients with alcoholic hepatitis. Clin Gastroenterol Hepatol. 2014; 12(10): 1745-1752. https://doi.org/10.1016/j.cgh.2014.02.041
31. Mendes BG, Schnabl B. From intestinal dysbiosis to alcohol-associated liver disease. Clin Mol Hepatol. 2020; 26(4): 595-605. https://doi.org/10.3350/cmh.2020.0086
32. Wang L, Fouts DE, Stärkel P, et al. Intestinal REG3 Lectins Protect against Alcoholic Steatohepatitis by Reducing MucosaAssociated Microbiota and Preventing Bacterial Translocation. Cell Host Microbe. 2016; 19(2): 227-239. https://doi.org/10.1016/j.chom.2016.01.003
33. Skinner C, Thompson AJ, Thursz MR, et al. Intestinal permeability and bacterial translocation in patients with liver disease, focusing on alcoholic aetiology: methods of assessment and therapeutic intervention. Therap Adv Gastroenterol. 2020; 13: 1756284820942616. https://doi:10.1177/1756284820942616.
34. Rao RK. Acetaldehyde-induced barrier disruption and paracellular permeability in Caco-2 cell monolayer. Methods Mol Biol. 2008; 447: 171-183. https://doi.org/10.1007/978-1-59745-242-7_13
35. Grewal RK, Mahmood A. Ethanol induced changes in glycosylation of mucins in rat intestine. Ann Gastroenterol. 2009; 22: 178-183.
36. Chen P, Stärkel P, Turner JR, et al. Dysbiosis-induced intestinal inflammation activates tumor necrosis factor receptor I and mediates alcoholic liver disease in mice. Hepatology. 2015; 61(3): 883-894. https://doi.org/10.1002/hep.27489
37. Xie G, Zhong W, Zheng X, et al. Chronic ethanol consumption alters mammalian gastrointestinal content metabolites. J Proteome Res. 2013; 12(7): 3297-3306. https://doi.org/10.1021/pr400362z
38. Cresci GA, Glueck B, McMullen MR, et al. Prophylactic tributyrin treatment mitigates chronic-binge ethanol-induced intestinal barrier and liver injury. J Gastroenterol Hepatol. 2017; 32(9): 1587-1597. https://doi.org/10.1111/jgh.13731
39. Meroni M, Longo M, Rametta R, et al. Genetic and Epigenetic Modifiers of Alcoholic Liver Disease. Int J Mol Sci. 2018; 19(12): 3857. https://doi.org/10.3390/ijms19123857
40. Stenman LK, Holma R, Forsgård R, et al. Higher fecal bile acid hydrophobicity is associated with exacerbation of dextran sodium sulfate colitis in mice. J Nutr. 2013; 143(11): 1691–1697. http://dx.doi.org/10.3945/jn.113.180810
41. Garbuzenko D.V. The role of intestinal microflora in the development of complications of hepatic cirrhosis-associated portal hypertension. Clinical medicine. 2007; 85(8): 15-19. PMID:17926483 [in Russian]
42. Piñero P, Juanola O, Caparrós E, et al. Toll-like receptor polymorphisms compromise the inflammatory response against bacterial antigen translocation in cirrhosis. Sci Rep. 2017; 7: 46425. https://doi.org/10.1038/srep46425
43. Budai MM, Varga A, Milesz S, et al. Aloe vera downregulates LPS-induced inflammatory cytokine production and expression of NLRP3 inflammasome in human macrophages. Mol Immunol. 2013; 56(4): 471-479. https://doi.org/10.1016/j.molimm.2013.05.005
44. He Y, Franchi L, Núñez G. TLR agonists stimulate Nlrp3-dependent IL-1β production independently of the purinergic P2X7 receptor in dendritic cells and in vivo. J Immunol. 2013; 190(1): 334-339. https://doi.org/10.4049/jimmunol.1202737
45. Gehrke N, Hövelmeyer N, Waisman A, et al. Hepatocyte-specific deletion of IL1-RI attenuates liver injury by blocking IL-1 driven autoinflammation. J Hepatol. 2018; 68(5): 986-995. https://doi.org/10.1016/j.jhep.2018.01.008
46. Müller T, Hamm S, Bauer S. TLR9-mediated recognition of DNA. Handb Exp Pharmacol. 2008; 183: 51-70. https://doi.org/10.1007/978-3-540-72167-3_3
47. Nicoletti A, Ponziani FR, Biolato M, et al. Intestinal permeability in the pathogenesis of liver damage: From non-alcoholic fatty liver disease to liver transplantation. World J Gastroenterol. 2019; 25(33): 4814-4834. https://doi.org/10.3748/wjg.v25.i33.4814
48. Vassallo GA, Dionisi T, Tarli C, et al. Alcohol-related Liver Disease and sepsis. Eur Rev Med Pharmacol Sci. 2021; 25(13): 4563-4569. https://doi.org/10.26355/eurrev_202107_26249
49. Michelena J, Altamirano J, Abraldes JG, et al. Systemic inflammatory response and serum lipopolysaccharide levels predict multiple organ failure and death in alcoholic hepatitis. Hepatology. 2015; 62(3): 762-772. https://doi.org/10.1002/hep.27779
50. Singal AK, Shah VH, Kamath PS. Infection in Severe Alcoholic Hepatitis: Yet Another Piece in the Puzzle. Gastroenterology. 2017; 152(5): 938-940. https://doi.org/10.1053/j.gastro.2017.02.030
51. Riva A, Patel V, Kurioka A, et al. Mucosa-associated invariant T cells link intestinal immunity with antibacterial immune defects in alcoholic liver disease. Gut. 2018; 67(5): 918-930. https://doi.org/10.1136/gutjnl-2017-314458
52. Ferrere G, Wrzosek L, Cailleux F, et al. Fecal microbiota manipulation prevents dysbiosis and alcohol-induced liver injury in mice. J Hepatol. 2017; 66(4): 806-815. https://doi.org/10.1016/j.jhep.2016.11.008
53. Philips CA, Pande A, Shasthry SM, et al. Healthy Donor Fecal Microbiota Transplantation in Steroid-Ineligible Severe Alcoholic Hepatitis: A Pilot Study. Clin Gastroenterol Hepatol. 2017; 15(4): 600-602. https://doi.org/10.1016/j.cgh.2016.10.029
54. Philips CA, Ahamed R, Rajesh S, et al. Long-term Outcomes of Stool Transplant in Alcohol-associated Hepatitis — Analysis of Clinical Outcomes, Relapse, Gut Microbiota and Comparisons with Standard Care. J Clin Exp Hepatol. 2022 (In Press). https://doi.org/10.1016/j.jceh.2022.01.001
55. Dhiman R, Sharma A, Roy A, et al. Role of fecal microbiota transplantation in severe alcoholic hepatitis: assessment of impact on prognosis and short-term outcomes. J Hepatol. 2020; 73(Suppl 1): 179.
56. Sarin SK, Pande A, Schnabl B. Microbiome as a therapeutic target in alcohol-related liver disease. J Hepatol. 2019; 70(2): 260-272. https://doi.org/10.1016/j.jhep.2018.10.019
57. Link A, Lachmund T, Schulz C, et al. Endoscopic peroral jejunal fecal microbiota transplantation. Dig Liver Dis. 2016; 48(11): 1336-1339. https://doi.org/10.1016/j.dld.2016.08.110
58. Baxter M, Ahmad T, Colville A, et al. Fatal Aspiration Pneumonia as a Complication of Fecal Microbiota Transplant. Clin Infect Dis. 2015; 61(1): 136-137. https://doi.org/10.1093/cid/civ247
59. Cheng YW, Alhaffar D, Saha S, et al. Fecal Microbiota Transplantation Is Safe and Effective in Patients With Clostridioides difficile Infection and Cirrhosis. Clin Gastroenterol Hepatol. 2021; 19(8): 1627-1634. https://doi.org/10.1016/j.cgh.2020.06.051
60. Rapoport EA, Baig M, Puli SR. Adverse events in fecal microbiota transplantation: a systematic review and meta-analysis. Ann Gastroenterol. 2022; 35(2):150-163. https://doi.org/10.20524/aog.2022.0695
61. Baxter M, Colville A. Adverse events in faecal microbiota transplant: a review of the literature. J Hosp Infect. 2016; 92(2): 117-127. https://doi.org/10.1016/j.jhin.2015.10.024
62. Allegretti JR, Kassam Z, Fischer M, et al. Risk Factors for Gastrointestinal Symptoms Following Successful Eradication of Clostridium difficile by Fecal Microbiota Transplantation (FMT). J Clin Gastroenterol. 2019; 53(9): 405-408. https://doi.org/10.1097/MCG.0000000000001194
63. Wang S, Xu M, Wang W, et al. Systematic Review: Adverse Events of Fecal Microbiota Transplantation. PLoS One. 2016; 11(8): e0161174. https://doi.org/10.1371/journal.pone.0161174
64. Qazi T, Amaratunga T, Barnes EL, et al. The risk of inflammatory bowel disease flares after fecal microbiota transplantation: Systematic review and meta-analysis. Gut Microbes. 2017; 8(6): 574-588. https://doi.org/10.1080/19490976.2017.1353848
65. Allegretti JR, Kelly CR, Grinspan A, et al. Outcomes of Fecal Microbiota Transplantation in Patients With Inflammatory Bowel Diseases and Recurrent Clostridioides difficile Infection. Gastroenterology. 2020; 159(5): 1982-1984. https://doi.org/10.1053/j.gastro.2020.07.045
66. Gupta S, Mullish BH, Allegretti JR. Fecal Microbiota Transplantation: The Evolving Risk Landscape. Am J Gastroenterol. 2021; 116(4): 647-656. https://doi.org/10.14309/ajg.0000000000001075
67. Hohmann EL, Ananthakrishnan AN, Deshpande V. Case Records of the Massachusetts General Hospital. Case 25-2014. A 37-year-old man with ulcerative colitis and bloody diarrhea. N Engl J Med. 2014; 371(7): 668-675. https://doi.org/10.1056/NEJMcpc1400842
68. Rossen NG, Fuentes S, van der Spek MJ, et al. Findings From a Randomized Controlled Trial of Fecal Transplantation for Patients With Ulcerative Colitis. Gastroenterology. 2015; 149(1): 110-118. https://doi.org/10.1053/j.gastro.2015.03.045
69. DeFilipp Z, Bloom PP, Torres Soto M, et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N Engl J Med. 2019; 381(21): 2043–2050. https://doi.org/10.1056/NEJMoa1910437
70. Kassam Z, Dubois N, Ramakrishna B, et al. Donor Screening for Fecal Microbiota Transplantation. N Engl J Med. 2019; 381(21): 2070-2072. https://doi.org/10.1056/NEJMc1913670
71. US Food and Drug Administration. Information pertaining to additional safety protections regarding use of fecal microbiota for transplantation–screening and testing of stool donors for multi-drug resistant organisms [internet] (https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/information-pertaining-additionalsafety-protections-regarding-use-fecal-microbiota-transplantation) (2019). Accessed June 30, 2020.
72. Zellmer C, Sater MRA, Huntley MH, et al. Shiga Toxin-Producing Escherichia coli Transmission via Fecal Microbiota Transplant. Clin Infect Dis. 2021; 72(11): 876-880. https://doi.org/10.1093/cid/ciaa1486
73. Cammarota G, Ianiro G, Kelly CR, et al. International consensus conference on stool banking for faecal microbiota transplantation in clinical practice. Gut. 2019; 68(12): 2111-2121. https://doi.org/10.1136/gutjnl-2019-319548
74. US Food and Drug Administration. Information pertaining to additional safety protections regarding use of fecal microbiota for transplantation: Testing of stool donors for enteropathogenic Escherichia coli and Shigatoxin-producing Escherichia coli [internet] (https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/information-pertaining-additional-safety-protections-regarding-usefecal-microbiota-transplantation-0) (2020). Accessed June 30, 2020.
75. Han C, Duan C, Zhang S, et al. Digestive Symptoms in COVID-19 Patients With Mild Disease Severity: Clinical Presentation, Stool Viral RNA Testing, and Outcomes. Am J Gastroenterol. 2020; 115(6): 916-923. https://doi.org/10.14309/ajg.0000000000000664
76. Ianiro G, Mullish BH, Kelly CR, et al. Reorganisation of faecal microbiota transplant services during the COVID-19 pandemic. Gut. 2020; 69(9): 1555-1563. https://doi.org/10.1136/gutjnl-2020-321829
Review
For citations:
Garbuzenko D.V. Pathophysiological Prerequisites and Therapeutic Potential of Fecal Microbiota Transplantation in Severe Alcoholic Hepatitis. The Russian Archives of Internal Medicine. 2022;12(5):352-362. https://doi.org/10.20514/2226-6704-2022-12-5-352-362