Gene Therapy for Human Diseases: Recent Achievements and Near-Term Development Prospects
https://doi.org/10.20514/2226-6704-2022-12-5-363-369
Abstract
The article briefly summarizes recent advances in genetic medicine that paved the way for the further development of gene therapy and set the stage for the development of next generation technology. Issues related to the main obstacle for wider application of gene therapy methods, in particular, with the immune response to gene delivery vectors and transgene products are considered. In this context, the role of new technology allowing to bypass the immune obstacle, such as development of modified capsids of adeno-associated viruses (AAV) and methods for temporary removal of antibodies from the bloodstream, as well as gene transfer into tissues using nanoparticles, is discussed. Along with the technology of the first generation gene therapy focused on the delivery of transgenes into target tissues, latest advances in the development of a completely new approach to gene therapy which is based on precise modification of the human genome sequence, gene editing technology, are summarized. Finally, promising next-generation gene editing technology is outlined, such as RNA-targeted editing technology and epigenome editing technology, which are more specific, precise, efficient and applicable to different groups of diseases. The article concludes that gene therapy and, in particular, human genome editing is perhaps the most exciting and revolutionary biotechnology of our time, due to both recent developments and opportunities it might provide in the nearest future.
About the Authors
K. A. AitbaevKyrgyzstan
Bishkek
Competing Interests:
The authors declare no conflict of interests
I. T. Murkamilov
Kyrgyzstan
Ilkhom T. Murkamilov
Bishkek
Competing Interests:
The authors declare no conflict of interests
Z. A. Murkamilova
Kyrgyzstan
Bishkek
Competing Interests:
The authors declare no conflict of interests
F. A. Yusupov
Kyrgyzstan
Osh
Competing Interests:
The authors declare no conflict of interests
References
1. Friedmann T., and Roblin R. Gene therapy for human genetic disease? Science 1972; 175: 949–955. https://doi.org/10.1126/science.175.4025.949.
2. Williams D.A., Lemischka I.R., Nathan D.G. et al. Introduction of new genetic material into pluripotent haematopoietic stem cells of the mouse. Nature 1984; 310: 476–480. https://doi.org/10.1038/310476a0.
3. Blaese R.M., Culver K.W., Miller A.D. et al. T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years. Science 1995; 270: 475–480. https://doi.org/10.1126/science.270.5235.475.
4. Raper S.E., Chirmule N., Lee F.S. et al. Fatal systemic inflammatory syndrome in a ornithine transcarbarmylase deficient patient following adenoviral gene transfer. Mol. Genet. Metab. 2003; 80: 148–158. https://doi.org/10.1016/j.ymgme.2003.08.016.
5. Hacein-Bey-Abina S., Kalle C.V., Schmidt M. et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419. https://doi.org/10.1126/science.1088547.
6. Gao G., Vandenberghe L., aWilson J.M. New recombinant serotypes of AAV vectors. Curr. Gene Ther. 2005; 5: 285–297. https://doi.org/10.2174/1566523054065057.
7. Pasi K.J., Rangarajan S., Mitchell N. et al. Multiyear follow-up of AAV5-hFVIII-SQ gene therapy for hemophilia A.N. Engl. J. Med. 2020; 382: 29–40. https://doi.org/10.1056/NEJMoa1908490.
8. Mendell J.R., Sahenk Z., Lehman K. et al. Assessment of Systemic Delivery of rAAVrh74.MHCK7.micro-dystrophin in Children With Duchenne Muscular Dystrophy: A Nonrandomized Controlled Trial. JAMA Neurol. 2020; 77: 1–10. https://doi.org/10.1001/jamaneurol.2020.1484.
9. Thompson AA, Walters MC, Kwiatkowski J et al. Gene therapy in patients with transfusion-dependent beta-thalassemia. N. Engl. J. Med. 2018; 378: 1479–1493. https://doi.org/10.1056/NEJMoa1705342
10. Boutin S., Monteilhet V., Veron P. et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum. Gene Ther. 2010; 21: 704–712. https://doi.org/10.1089/hum.2009.182.
11. Tse L.V., Klinc K.A., Madigan V.J. et al. Structure-guided evolution of antigenically distinct adeno-associated virus variants for immune evasion. Proc. Natl Acad. Sci. USA. 2017; 114:E4812–E4821. https://doi.org/10.1073/pnas.1704766114.
12. Maheshri N., Koerber J.T., Kaspar B.K. et al. Directed evolution of adeno-associated virus yields enhanced gene delivery vectors. Nat. Biotechnol. 2006; 24: 198–204. https://doi.org/10.1038/nbt1182.
13. Leborgne C., Barbon E., Alexander J.M. et al. IgG-cleaving endopeptidase enables in vivo gene therapy in the presence of anti-AAV neutralizing antibodies. Nat. Med. 2020; 26: 1096–1101. https://doi.org/10.1038/s41591-020-0911-7.
14. Corti M., Elder M., Falk D. et al. B-cell depletion is protective against anti-AAV capsid immune response: a human subject case study. Mol. Ther. Methods Clin. Dev. 2014; 1: 14033.
15. Meliani A., Boisgerault F., Hardet R. et al. Antigen-selective modulation of AAV immunogenicity with tolerogenic rapamycin nanoparticles enables successful vector re-administration. Nat. Commun. 2018; 9: 4098. https://doi.org/10.1038/s41467-018-06621-3.
16. Lokugamage M.P., Sago C.D., Dahlman J.E. Testing thousands of nanoparticles in vivo using DNA barcodes. Curr. Opin. Biomed. Eng. 2018; 7: 1–8. https://doi.org/10.1016/j.cobme.2018.08.001.
17. Akinc A, Maier MA, Manoharan M, et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acidbased drugs. Nat. Nanotechnol. 2019; 14: 1084–1087. https://doi.org/10.1038/s41565-019-0591-y
18. Tebas P., Stein D., Tang W.W. et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV.N. Engl. J. Med. 2014; 370: 901–910. https://doi.org/10.1056/NEJMoa1300662.
19. Mullard A. Gene-editing pipeline takes off. Nat. Rev. Drug Discov. 2020; 19: 367–372. https://doi.org/10.1038/d41573-020-00096-y.
20. Stadtmauer E.A., Fraietta J.A., Davis M.M. et al. CRISPRengineered T cells in patients with refractory cancer. Science. 2020 Feb 28; 367(6481):eaba7365. doi:10.1126/science.aba7365. Epub 2020 Feb 6.
21. Xu L., Wang J., Liu Y. et al. CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia. N. Engl. J. Med. 2019; 381: 1240–1247. https://doi.org/10.1056/NEJMoa1817426.
22. Maeder ML, Stefanidakis M, Wilson CJ, et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat. Med. 2019; 25:229–233. https://doi.org/10.1038/s41591-018-0327-9.
23. Finn J.D., Smith A.R., Patel M.C. et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 2018; 22: 2227–2235. https://doi.org/10.1016/j.celrep.2018.02.014.
24. Federal Scientific and Technical Program for the Development of Genetic Technologies for 2019 — 2027. [Electronic resource]. URL:https://legalacts.ru/doc/postanovlenie-pravitelstva-rfot-22042019-n-479-ob-utverzhdenii/ (date of the application: 20.12.2021) [In Russian].
25. Anzalone A.V., Koblan L.W., Liu D.R. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 2020; 38: 824–844.
26. Pickar-Oliver A., Gersbach C.A. The next generation of CRISPR-Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 2019; 20:490–507. https://doi.org/10.1038/s41580-019-0131-5
27. Thakore P.I., Black J.B., Hilton I.B., et al. Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat. Methods. 2016; 13:127–137. https://doi.org/10.1038/nmeth.3733.
28. Dey G., Jaimovich A., Collins S.R. et al. Systematic discovery of human gene function and principles of modular organization through phylogenetic profiling. Cell Rep. 2015; 10:993–1006. https://doi.org/10.1016/j.celrep.2015.01.025.
29. Shalem O., Sanjana N.E., Zhang F. High-throughput functional genomics using CRISPR-Cas9. Nat. Rev. Genet. 2015; 16:299–311. https://doi.org/10.1038/nrg3899.
30. Hnisz D., Abraham B.J., Lee T.I. et al. Super-enhancers in the control of cell identity and disease. Cell. 2013; 155:934–947. https://doi.org/10.1016/j.cell.2013.09.053.
31. Wu Y., Zeng J., Roscoe B.P. et al. Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nat. Med. 2019; 25:776–783. https://doi.org/10.1038/s41591-019-0401-y.
32. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012: 6; 489(7414): 57-74. https://doi.org/10.1038/nature11247.
33. Lanza R., Russell D.W., Nagy A. Engineering universal cells that evade immune detection. Nat. Rev. Immunol. 2019; 19:723–733. https://doi.org/10.1038/s41577-019-0200-1.
34. Kim J., Hu C., Moufawad E.l. Achkar C. et al. Patient-customized oligonucleotide therapy for a rare genetic disease. N. Engl. J. Med. 2019; 381: 1644–1652. https://doi.org/10.1056/NEJMoa1813279.
35. Fedorin V.V. Human genetic editing: prospects, inevitability and the issue of moral and ethical justification. Philosophical thought. 2020; 12: 30-41. https://doi.org/10.25136/2409-8728.2020.12.34403 [In Russian].
Review
For citations:
Aitbaev K.A., Murkamilov I.T., Murkamilova Z.A., Yusupov F.A. Gene Therapy for Human Diseases: Recent Achievements and Near-Term Development Prospects. The Russian Archives of Internal Medicine. 2022;12(5):363-369. https://doi.org/10.20514/2226-6704-2022-12-5-363-369