Preview

Архивъ внутренней медицины

Расширенный поиск

ДИАГНОСТИКА И ЛЕЧЕНИЕ МОНОГЕННЫХ ФОРМ САХАРНОГО ДИАБЕТА: В ФОКУСЕ MODY-ДИАБЕТ

https://doi.org/10.20514/2226-6704-2022-12-6-430-437

Полный текст:

Аннотация

Диабет зрелого возраста у молодых (MODY) является наиболее распространенной формой моногенного диабета, возникающего в результате мутации одного гена. Он характеризуется легкой гипергликемией, аутосомно-доминантным типом наследования, ранним началом диабета (<25 лет), сохранением эндогенной секреции инсулина, а также наличием подтипов, различающихся клинически и генетически. В настоящее время идентифицировано 14 подтипов MODY, отличающихся частотой возникновения, клиническими особенностями, тяжестью диабета и связанными с ним осложнениями, а также ответом на лечение. Этот тип диабета, зачастую некорректно диагностируется как сахарный диабет типа 1 или типа 2. Причина тому — клиническое сходство с другими типами диабета, высокая стоимость и ограниченный доступ к генетическому тестированию, а также недостаточная осведомлённость клиницистов. В результате несвоевременной диагностики пациенты не получают надлежащего эффективного лечения, отличного от терапии диабета 1 и 2 типов. Цель данного обзора — повысить осведомлённость клиницистов о MODY-диабете, акцентировав внимание на обновленной информации о методах диагностики и лечения 14 подтипов.

Об авторах

К. А. Айтбаев
Научно-исследовательский институт молекулярной биологии и медицины
Кыргызстан

Бишкек



И. Т. Муркамилов
Кыргызская государственная медицинская академия имени И.К. Ахунбаева; ГОУ ВПО Кыргызско-Российский славянский университет
Кыргызстан

Илхом Торобекович Муркамилов

Бишкек



Ж. А. Муркамилова
ГОУ ВПО Кыргызско-Российский славянский университет
Россия

Бишкек



В. В. Фомин
ФГАОУ ВО Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)
Россия

Москва



И. О. Кудайбергенова
Кыргызская государственная медицинская академия имени И.К. Ахунбаева
Кыргызстан

Бишкек



Ф. А. Юсупов
Ошский государственный университет
Кыргызстан

Ош



Список литературы

1. Pihoker C, Gilliam LK, Ellard S et al. Prevalence, characteristics and clinical diagnosis of maturity onset diabetes of the young due to mutations in HNF1A, HNF4A, and glucokinase: Results from the SEARCH for Diabetes in Youth. J. Clin. Endocrinol. Metab. 2013; 98: 4055–4062. https://doi.org/10.1210/jc.2013-1279

2. Дедов И.И., Шестакова М.В., Майоров А.Ю. и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. М. 2021; 24(S1). 222 с.

3. Mohan V, Sharp PS, Aber VR et al. Insulin resistance in maturity onset diabetes of the young. Diabete Metab. 1987;13(3):193-197.

4. Kim SH. Maturity-Onset Diabetes of the Young: What Do Clinicians Need to Know? Diabetes Metab. J. 2015; 39: 468–477.https://doi.org/10.4093/dmj.2015.39.6.468

5. Shields BM, Hicks S, Shepherd M et al. Maturity-onset diabetes of the young (MODY): How many cases are we missing? Diabetologia. 2010; 53: 2504–2508. https://doi.org/10.1007/s00125-010-1799-4

6. Heuvel-Borsboom H, de Valk HW, Losekoot M, et al. Maturity onset diabetes of the young: Seek and you will find. Neth. J. Med. 2016; 74: 193–200.

7. Malik RA, Shaikh S. Monogenic diabetes: Importance of genetic testing. Middle East J. Fam. Med. 2020; 18: 78–86.

8. Peixoto-Barbosa R, Reis AF, Giuffrida FMA. Update on clinical screening of maturity-onset diabetes of the young (MODY). Diabetol. Metab. Syndr. 2020; 12:50. https://doi.org/10.1186/s13098-020-00557-9

9. Stanik J, Dusatkova P, Cinek O et al. De novo mutations of GCK, HNF1A and HNF4A may be more frequent in MODY than previously assumed. Diabetologia 2014; 57: 480–484. https://doi.org/10.1007/s00125-013-3119-2

10. Ellard S, Bellanné-Chantelot C, Hattersley AT. Best practice guidelines for the molecular genetic diagnosis of maturity-onset diabetes of the young. Diabetologia 2008; 51: 546–553. https://doi.org/10.1007/s00125-008-0942-y

11. Thanabalasingham G, Owen KR. Diagnosis and management of maturity onset diabetes of the young (MODY). BMJ 2011; 343: d6044. https://doi.org/10.1136/bmj.d6044

12. Pearson ER, Starkey BJ, Powell RJ et al. Genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet 2003; 362: 1275–1281. https://doi.org/10.1016/S0140-6736(03)14571-0

13. Timsit J, Saint-Martin C, Dubois-Laforgue D, et al. Searching for Maturity-Onset Diabetes of the Young (MODY): When and What for? Can. J. Diabetes 2016; 40: 455–461. https://doi.org/ 10.1016/j. jcjd.2015.12.005

14. Amed S, Oram R. Maturity-Onset Diabetes of the Young (MODY): Making the Right Diagnosis to Optimize Treatment. Can. J. Diabetes 2016; 40: 449–454. https://doi.org/10.1016/j.jcjd.2016.03.002

15. Delvecchio M, Pastore C, Giordano P. Treatment Options for MODY Patients: A Systematic Review of Literature. Diabetes Ther. 2020; 11: 1667–1685. doi: 10.1007/s13300-020-00864-4

16. Yamagata K, Oda N, Kaisaki PJ et al. Mutations in the hepatocyte nuclear factor-1alpha gene in maturity-onset diabetes of the young (MODY3). Nature 1996; 384: 455–458. https://doi.org/10.1038/384455a0

17. Nkonge KM, Nkonge DK, Nkonge TN. The epidemiology, molecular pathogenesis, diagnosis, and treatment of maturity-onset diabetes of the young (MODY). Clin. Diabetes Endocrinol. 2020; 6: 20. https://doi.org/10.1186/s40842-020-00112-5

18. Stride A, Vaxillaire M, Tuomi T et al. The genetic abnormality in the beta cell determines the response to an oral glucose load. Diabetologia 2002; 45: 427–435. https://doi.org/10.1007/s00125-001-0770-9

19. Urakami T. Maturity-onset diabetes of the young (MODY): Current perspectives on diagnosis and treatment. Diabetes Metab. Syndr. Obes. 2019; 12: 1047–1056. https://doi.org/10.2147/DMSO.S179793

20. Kanwal A, Fazal S, Ismail M, et al. A narrative insight to maturityonset diabetes of the young. Clin. Rev. Opin. 2011; 3: 6–13.

21. Matschinsky F, Liang Y, Kesavan P et al. Glucokinase as pancreatic beta cell glucose sensor and diabetes gene. J. Clin. Investig. 1993; 92: 2092–2098. https://doi.org/10.1172/JCI116809

22. Hulín J, Škopková M, Valkovičová T et al. Clinical implications of the glucokinase impaired function—GCK MODY today. Physiol. Res. 2020; 69: 995–1011. https://doi.org/10.33549/physiolres.934487

23. Rudland VL. Diagnosis and management of glucokinase monogenic diabetes in pregnancy: Current perspectives. Diabetes Metab. Syndr. Obes. 2019; 12: 1081–1089. https://doi.org/10.2147/DMSO.S186610

24. Valkovicova T, Skopkova M, Stanik J, et al. Novel insights into genetics and clinics of the HNF1A-MODY. Endocr. Regul. 2019; 53: 110–134. https://doi.org/10.2478/enr-2019-0013

25. Docena MK, Faiman C, Stanley CM, Pantalone KM. Mody-3: Novel HNF1A mutation and the utility of glucagon-like peptide (GLP)-1 receptor agonist therapy. Endocr. Pract. 2014; 20: 107–111. https://doi.org/10.4158/EP13254.OR

26. Kim SK, Selleri L, Lee JS et al. Pbx1 inactivation disrupts pancreas development and in Ipf1-deficient mice promotes diabetes mellitus. Nat. Genet. 2002; 30: 430–435. https://doi.org/10.1038/ng860

27. Schwitzgebel V, Mamin A, Brun T et al. Agenesis of Human Pancreas due to Decreased Half-Life of Insulin Promoter Factor 1. J. Clin. Endocrinol. Metab. 2003; 88: 4398–4406. https://doi.org/10.1210/jc.2003-030046

28. Stoffers DA, Zinkin NT, Stanojevic V et al. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat. Genet. 1997; 15: 106–110. https://doi.org/10.1038/ng0197-106

29. Deng M, Xiao X, Zhou L, et al. First Case Report of Maturity- Onset Diabetes of the Young Type 4 Pedigree in a Chinese Family. Front. Endocrinol. 2019; 10: 406. https://doi.org/10.3389/fendo.2019.00406

30. Mangrum C, Rush E, Shivaswamy V. Genetically Targeted Dipeptidyl Peptidase-4 Inhibitor Use in a Patient with a Novel Mutation of MODY type 4. Clin. Med. Insights Endocrinol. Diabetes. 2015; 8: 83–86. https://doi.org/10.4137/CMED.S31926

31. Lindner TH, Cockburn BN, Bell GI. Molecular genetics of MODY in Germany. Diabetologia.1999; 42: 121–123. https://doi.org/10.1007/s001250051128

32. Bellanné-Chantelot C, Chauveau D, Gautier J-F et al. Clinical Spectrum Associated with Hepatocyte Nuclear Factor-1 Mutations Background: Maturity-onset diabetes of the young type 5. Ann. Intern. Med. 2004; 140: 510–517. https://doi.org/10.7326/0003-4819-140-7-200404060-00009

33. Hattersley AT, Greeley SAW, Polak M et al. ISPAD Clinical Practice Consensus Guidelines 2018: The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr. Diabetes. 2018; 19: 47–63. https://doi.org/10.1111/pedi.12772

34. Firdous P, Nissar K, Ali S et al. Genetic Testing of Maturity-Onset Diabetes of the Young Current Status and Future Perspectives. Front. Endocrinol. 2018; 9: 253. https://doi.org/10.3389/fendo.2018.00253

35. Malecki MT, Jhala US, Antonellis A et al. Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nat. Genet. 1999; 23: 323–328. https://doi.org/10.1038/15500

36. Horikawa Y, Enya M. Genetic Dissection and Clinical Features of MODY6 (NEUROD1-MODY). Curr. Diab. Rep. 2019; 19(3):12. https://doi.org/10.1007/s11892-019-1130-9

37. Neve B, Fernandez-Zapico ME, Ashkenazi-Katalan V. Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function. Proc. Natl. Acad. Sci. USA 2005; 102: 4807–4812. https://doi.org/10.1073/pnas.0409177102

38. Raeder H, Johansson S, Holm PI et al. Mutations in the CEL VNTR cause a syndrome of diabetes and pancreatic exocrine dysfunction. Nat.Genet. 2006; 38: 54–62. https://doi.org/10.1038/ng1708

39. Hui DY, Howles PN. Carboxyl ester lipase: Structure-function relationship and physiological role in lipoprotein metabolism and atherosclerosis. J. Lipid Res. 2002; 43: 2017–2030. https://doi.org/10.1194/jlr.r200013-jlr200

40. Habener JF, Kemp DM, Thomas MK. Minireview: Transcriptional regulation in pancreatic development. Endocrinology. 2005; 146: 1025–1034. https://doi.org/10.1210/en.2004-1576

41. Mauvais-Jarvis F, Smith SB, Le May C et al. PAX4 gene variations predispose to ketosis-prone diabetes. Hum. Mol. Genet. 2004; 13: 3151–3159. https://doi.org/10.1093/hmg/ddh341

42. Plengvidhya N, Kooptiwut S, Songtawee N et al. PAX4 mutations in Thais with maturity onset diabetes of the young. J. Clin. Endocrinol. Metab. 2007; 92: 2821–2826. https://doi.org/10.1093/hmg/ddh341

43. Sujjitjoon J, Kooptiwut S, Chongjaroen N et al. Aberrant mRNA splicing of paired box 4 (PAX4) IVS7-1G>A mutation causing maturity-onset diabetes of the young, type 9. Acta Diabetol. 2016; 53: 205–216. https://doi.org/10.1007/s00592-015-0760-x

44. Edghill EL, Flanagan SE, Patch A-M et al. Insulin mutation screening in 1,044 patients with diabetes: Mutations in the INS gene are a common cause of neonatal diabetes but a rare cause of diabetes diagnosed in childhood or adulthood. Diabetes. 2008; 57: 1034–1042. https://doi.org/10.2337/db07-1405

45. Jang KM. Maturity-onset diabetes of the young: Update and perspectives on diagnosis and treatment. Yeungnam Univ. J. Med. 2020; 37: 13–21. https://doi.org/10.12701/yujm.2019.00409

46. Islam KB, Rabbani H, Larsson C et al. Molecular cloning, characterization, and chromosomal localization of a human lymphoid tyrosine kinase related to murine Blk. J. Immunol. 1995; 154: 1265–1272.

47. Borowiec M, Liew CW, Thompson R et al. Mutations at the BLK locus linked to maturity onset diabetes of the young and beta-cell dysfunction. Proc. Natl. Acad. Sci. USA. 2009; 106: 14460–14465. https://doi.org/10.1073/pnas.0906474106

48. Bonnefond A, Yengo L, Philippe J et al. Reassessment of the putative role of BLK-p.A71T loss-of-function mutation in MODY and type 2 diabetes. Diabetologia. 2013; 56: 492–496. https://doi.org/10.1007/s00125-012-2794-8

49. Doddabelavangala Mruthyunjaya M, Chapla A, Hesarghatta Shyamasunder A et al. Comprehensive Maturity Onset Diabetes of the Young (MODY) Gene Screening in Pregnant Women with Diabetes in India. PLoS ONE. 2017; 12: e0168656. https://doi.org/10.1371/journal.pone.0168656

50. Kapoor RR, Flanagan SE, James C et al. Hyperinsulinaemic hypoglycaemia. Arch. Dis. Child. 2009; 94: 450–457. https://doi.org/10.1136/adc.2008.148171

51. Rafiq M, Flanagan SE, Patch A-M et al. Effective treatment with oral sulfonylureas in patients with diabetes due to sulfonylurea receptor 1 (SUR1) mutations. Diabetes Care. 2008; 31: 204–209. https://doi.org/10.2337/dc07-1785

52. Schenck A, Goto-Silva L, Collinet C et al. The endosomal protein Appl1 mediates Akt substrate specificity and cell survival in vertebrate development. Cell. 2008; 133: 486–497. https://doi.org/10.1016/j.cell.2008.02.044

53. Anik A, Catli G, Abaci A, et al. Maturity-onset diabetes of the young (MODY): An update. J. Pediatr. Endocrinol. Metab. 2015; 28:251-263.


Рецензия

Для цитирования:


Айтбаев К.А., Муркамилов И.Т., Муркамилова Ж.А., Фомин В.В., Кудайбергенова И.О., Юсупов Ф.А. ДИАГНОСТИКА И ЛЕЧЕНИЕ МОНОГЕННЫХ ФОРМ САХАРНОГО ДИАБЕТА: В ФОКУСЕ MODY-ДИАБЕТ. Архивъ внутренней медицины. 2022;12(6):430-437. https://doi.org/10.20514/2226-6704-2022-12-6-430-437

For citation:


Aitbaev K.A., Murkamilov I.T., Murkamilova Z.A., Fomin V.V., Kudaibergenova I.o., Yusupov F.A. Diagnosis and Treatment of Monogenic Forms of Diabetes Mellitus: Focus on Mody-Diabetes. The Russian Archives of Internal Medicine. 2022;12(6):430-437. https://doi.org/10.20514/2226-6704-2022-12-6-430-437

Просмотров: 365


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2226-6704 (Print)
ISSN 2411-6564 (Online)