Preview

The Russian Archives of Internal Medicine

Advanced search

Possibilities and Prospects of Hypoxytherapy Application in Cardiology

https://doi.org/10.20514/2226-6704-2023-13-4-245-252

EDN: AHXHPL

Abstract

Despite the achievements of modern cardiology, the cardiovascular morbidity and mortality in most countries of the world remains high, which motivates the wider use of additional (alternative) preventive and therapeutic approaches, one of which is hypoxytherapy. Over several decades of 

using this method, a large amount of data has been accumulated that allows us to state the beneficial effect of various hypoxytherapy regimens on the clinical course of cardiovascular diseases and can potentially improve prognosis of them. The use of hypoxytherapy is associated with an improvement in blood pressure circadian rhythm, flow-dependent vasodilation, an insulin resistance decrease, a vascular wall stiffness redaction, an improvement in blood rheology, endothelial function and nitric oxide system, a decrease of proinflammatory and prothrombotic cytokines levels. A number of modern experts consider hypoxytherapy as an affordable and perspective method of prevention and treatment of cardiovascular disease, effectively supporting traditional non-drug and drug-based approaches. Contemporary data indicate serious future perspectives for an expanded study of the hypoxytherapy possibilities in cardiac patients, including through the State research programmes. This review is devoted to the discussion of the physiological effects of hypoxytherapy, the possibilities of its application in cardiological practice, including with the analysis of own data, as well as precautions during its implementation.

About the Authors

G. A. Ignatenko
SEI HPE State Donetsk S tate Medical University named after M. Gorky
Russian Federation

Donetsk



A. E. Bagriy
SEI HPE State Donetsk S tate Medical University named after M. Gorky
Russian Federation

Donetsk



T. S. Ignatenko
SEI HPE State Donetsk S tate Medical University named after M. Gorky
Russian Federation

Donetsk



V. A. Tolstoy
SEI HPE State Donetsk S tate Medical University named after M. Gorky
Russian Federation

Donetsk



I. S. Evtushenko
SEI HPE State Donetsk S tate Medical University named after M. Gorky
Russian Federation

Donetsk



E. S. Mykhailichenko
SEI HPE State Donetsk S tate Medical University named after M. Gorky
Russian Federation

Eugenia S. Mykhailichenko

Donetsk



References

1. Mc Namara K., Alzubaidi H., Jackson J.K. Cardiovascular disease as a leading cause of death: how are pharmacists getting involved? Integrated pharmacy research and practice. 2019: 1-11. doi: 10.2147/IPRP.S133088.

2. Timmis A., Vardas P., Townsend N. et al. European Society of Cardiology: cardiovascular disease statistics 2021. European Heart Journal. 2022; 43(8): 716-799. doi: 10.1093/eurheartj/ehab892.

3. Mendis S. Global progress in prevention of cardiovascular disease. Cardiovascular Diagnosis and Therapy. 2017; 67: S32-S38. doi: 10.21037/cdt.2017.03.06.

4. Rippe J.M. Lifestyle Strategies for Risk Factor Reduction, Prevention, and Treatment of Cardiovascular Disease. American Journal of Lifestyle Medicine. 2019; 13: 204–212. doi: 10.1177/1559827618812395.

5. Moore S.C., Patel A.V., Matthews C.E. et al. Leisure time physical activity of moderate to vigorous intensity and mortality: A large pooled cohort analysis. PLoS Medicine. 2012; 9: e1001335. doi:10.1371/journal.pmed.1001335.

6. Piercy K.L., Troiano R.P., Ballard R.M. et al. The physical activity guidelines for Americans. JAMA. 2018; 320: 2020–2028. doi: 10.1001/jama.2018.14854.

7. Verges S., Chacaroun S., Godin-Ribuot D. et al. Hypoxic Conditioning as a New Therapeutic Modality. Frontiers in Pediatrics. 2015; 3: 58. doi: 10.3389/fped.2015.00058.

8. Serebrovskaya T.V., Xi L. Intermittent hypoxia training as nonpharmacologic therapy for cardiovascular diseases: Practical analysis on methods and equipment. Experimental Biology and Medicine. 2016; 241: 1708–1723. doi:10.1177/1535370216657614.

9. Millet G.P., Debevec T., Brocherie F. et al. Therapeutic Use of Exercising in Hypoxia: Promises and Limitations. Frontiers in Physiology. 2016; 7: 224. doi: 10.3389/fphys.2016.00224.

10. Neubauer J.A. Invited Review: Physiological and pathophysiological responses to intermittent hypoxia. Journal of Applied Physiology. 2001; 90: 1593–1599. doi: 10.1152/jappl.2001.90.4.1593.

11. Behrendt T., Bielitzki R., Behrens M. et al. Effects of intermittent hypoxia–hyperoxia on performance-and health-related outcomes in humans: A systematic review. Sports Medicine-Open. 2022; 8(1): 1-28. doi: 10.1186/s40798-022-00450-x.

12. Riley C.J., Gavin M. Physiological Changes to the Cardiovascular System at High Altitude and its Effects on Cardiovascular Disease. High Altitude Medicine & Biology. 2017; 18: 102–113. doi: 10.1089/ham.2016.0112.

13. Rimoldi S.F., Sartori C., Seiler C. et al. High-altitude exposure in patients with cardiovascular disease: risk assessment and practical recommendations. Progress in Cardiovascular Diseases. 2010; 52: 512–524. doi: 10.1016/j.pcad.2010.03.005.

14. Savla J.J., Levine B.D., Sadek H.A. The Effect of Hypoxia on Cardiovascular Disease: Friend or Foe? High Altitude Medicine & Biology. 2018; 19: 124–130. doi: 10.1089/ham.2018.0044.

15. Wee J., Climstein M. Hypoxic training: Clinical benefits on cardiometabolic risk factors. Journal of Science and Medicine in Sport. 2015; 18: 56–61. doi: 10.1016/j.jsams.2013.10.247.

16. Bailey D.M., Davies B., Baker J. Training in hypoxia: modulation of metabolic and cardiovascular risk factors in men. Medicine and Science in Sports and Exercise. 2000; 32: 1058–1066.

17. Muangritdech N., Hamlin M.J., Sawanyawisuth K. et al. Hypoxic training improves blood pressure, nitric oxide and hypoxia-inducible 7 factor-1 alpha in hypertensive patients. European Journal of Applied Physiology. 2020; 120: 1815–1826. doi: 10.1007/s00421-020-04410-9.

18. Park H., Kim J., Park M. et al. Exposure and Exercise Training in Hypoxic Conditions as a New Obesity Therapeutic Modality: A Mini Review. Journal of Obesity & Metabolic Syndrome. 2018; 27: 93–101. doi: 10.7570/jomes.2018.27.2.93.

19. Urdampilleta A., González-Muniesa P., Portillo M.P. et al. Usefulness of combining intermittent hypoxia and physical exercise in the treatment of obesity. Journal of Physiology and Biochemistry. 2012; 68: 289–304. doi: 10.1007/s13105-0110115-1.

20. Rybnikova E.A., Nalivaeva N.N., Zenko M.Y. et al. Intermittent Hypoxic Training as an Effective Tool for Increasing the Adaptive Potential, Endurance and Working Capacity of the Brain. Front. Neurosci. 2022; 16: 941740. doi: 10.3389/fnins.2022.941740.

21. Prabhakar N.R., Peng Y., Kumar G.K. et al. Peripheral chemoreception and arterial pressure responses to intermittent hypoxia. Comprehensive Physiology. 2015; 5: 561–577. doi: 10.1002/cphy.c140039.

22. Park H.Y., Kim S.W., Jung W.S. et al. Hypoxic Therapy as a New Therapeutic Modality for Cardiovascular Benefit: A Mini Review. Rev. Cardiovasc. Med. 2022; 23(5): 161. doi: 10.31083/j.rcm2305161.

23. Sinex J.A., Chapman R.F. Hypoxic training methods for improving endurance exercise performance. Journal of Sport and Health Science. 2015: 4(4): 325-332. doi: 10.1016/j.jshs.2015.07.005.

24. Ignatenko G.A., Dubovaya A.V., Naumenko Yu.V. Treatment potential of normobaric hypoxic therapy in therapeutic and pediatric practice. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2022; 67(6): 46-53. doi: 10.21508/1027-4065-2022-67-6-46-53 [In Russian].

25. Faeh D., Gutzwiller F., Bopp M. Lower Mortality from Coronary Heart Disease and Stroke at Higher Altitudes in Switzerland. Circulation. 2009; 120: 495–501. doi: 10.1161/CIRCULATIONAHA.108.819250.

26. Faeh D., Moser A., Panczak R. et al. Independent at heart: persistent association of altitude with ischaemic heart disease mortality after consideration of climate, topography and built environment. Journal of Epidemiology and Community Health. 2016; 70: 798–806. doi: 10.1136/jech-2015-206210.

27. Ezzati M., Horwitz M.E., Thomas D.S. et al. Altitude, life expectancy and mortality from ischaemic heart disease, stroke, COPD and cancers: national population-based analysis of us counties. Journal of Epidemiology and Community Health. 2012; 66: e17. doi: 10.1136/jech.2010.112938.

28. Winkelmayer W.C., Hurley M.P., Liu J. et al. Altitude and the risk of cardiovascular events in incident us dialysis paients. Nephrology, Dialysis, Transplantation. 2012; 27: 2411– 2417. doi: 10.1093/ndt/gfr681.

29. Vedam H, Phillips CL, Wang D, Barnes DJ, Hedner JA, Unger G, et al. Short-term hypoxia reduces arterial stiffness in healthy men. European Journal of Applied Physiology. 2009; 105: 19– 8 25.

30. Leuenberger U.A., Johnson D., Loomis J. et al. Venous but not skeletal muscle interstitial nitric oxide is increased during hypobaric hypoxia. European Journal of Applied Physiology. 2008; 102: 457–461. doi: 10.1007/s00421-007-0601-x.

31. Tremblay J.C., Ainslie P.N., Turner R. et al. Endothelial function and shear stress in hypobaric hypoxia: time course and impact of plasma volume expansion in men. American Journal of PhysiologyHeart and Circulatory Physiology. 2020; 319: H980–H994. doi: 10.1152/ajpheart.00597.2020.

32. Lyamina N.P., Lyamina S.V., Senchiknin V.N. et al. Normobaric hypoxia conditioning reduces blood pressure and normalizes nitric oxide synthesis in patients with arterial hypertension. Journal of Hypertension. 2011; 29: 2265–2272. doi: 10.1097/HJH.0b013e32834b5846.

33. Burtscher M., Pachinger O., Ehrenbourg I. et al. Intermittent hypoxia increases exercise tolerance in elderly men with and without coronary artery disease. International Journal of Cardiology. 2004; 96: 247–254. doi: 10.1016/j.ijcard.2003.07.021.

34. Valle M.D.P., García-Godos F., Woolcott O.O. et al. Improvement of myocardial perfusion in coronary patients after intermittent hypobaric hypoxia. Journal of Nuclear Cardiology. 2006; 13: 69–74. doi: 10.1016/j.nuclcard.2005.11.008.

35. Serebrovskaja T.V., Shatilo V.B. Experience in the use of interval hypoxia for the prevention and treatment of diseases of the cardiovascular system. Review. Krovoobіg ta gemostaz. 2014; 1-2: 16-33. [In Russian].

36. Ignatenko G.A, Denisova E.M., Sergienko N.V. Hypoxytherapy as a promising method of increasing the effectiveness of complex treatment of comorbid pathology. Bulletin of urgent and recovery surgery. 2021; 6(4): 73-80. [In Russian].

37. Ignatenko G.A., Muhin I.V., Dzhodzhua R.A. The effect of different therapy regimens on the frequency of hypertensive crises and daily blood pressure profiles in young patients with genetically induced hypertension. Vestnik of hygiene and epidemiology. 2020; 24(2): 159-163. [In Russian].

38. Ignatenko G.A., Kontovskij E.A., Dubovik A.V. et al. The use of interval normobaric hypoxytherapy in patients with cardiopulmonary pathology. Vestnik of hygiene and epidemiology. 2018; 22(4):22-25. [In Russian].

39. Ignatenko G.A., Muhin I.V., Panieva N.Ju. Quality of life in hypertensive patients with hypothyroidism against the background of different therapy regimens. Vestnik of hygiene and epidemiology. 2020; 24(2): 185-188. [In Russian].

40. Montero D., Lundby C. Effects of Exercise Training in Hypoxia Versus Normoxia on Vascular Health. Sports Med. 2016; 46: 1725–1736. doi: 10.1007/s40279-016-0570-5.

41. Casey D.P., Joyner M.J. Local control of skeletal muscle blood flow during exercise: influence of available oxygen. Journal of Applied Physiology. 2011; 111: 1527–1538. doi: 10.1152/japplphysiol.00895.2011.

42. Wang J., Wu M., Mao T. et al. Effects of normoxic and hypoxic exercise regimens on cardiac, muscular, and cerebral hemodynamics suppressed by severe hypoxia in humans. Journal of Applied Physiology. 2010; 109: 219–229. doi: 10.1152/japplphysiol.00138.2010.

43. Jung K., Seo J., Jung W.S. et al. Effects of an Acute Pilates Program under Hypoxic Conditions on Vascular Endothelial Function in Pilates Participants: A Randomized Crossover Trial. International Journal of Environmental Research and Public Health. 2020; 17: 258. doi: 10.3390/ijerph17072584.

44. Katayama K., Fujita O., Iemitsu M. et al. The effect of acute exercise in hypoxia on flowmediated vasodilation. European Journal of Applied Physiology. 2013; 113: 349–357. doi: 10.1007/s00421-0122442-5.

45. Nishiwaki M., Kawakami R., Saito K. et al. Vascular adaptations to hypobaric hypoxic training in postmenopausal women. The Journal of Physiological Sciences. 2011; 61: 83–91. doi: 10.1007/s12576010-0126-7.

46. Park H., Jung W., Kim J. et al. Twelve weeks of exercise modality in hypoxia enhances health-related function in obese older Korean men: a randomized controlled trial. Geriatrics & Gerontology International. 2019; 19: 311–316. doi: 10.1111/ggi.13625.

47. Jung K., Kim J., Park H. et al. Hypoxic Pilates Intervention for Obesity: A Randomized Controlled Trial. International Journal of Environmental Research and Public Health. 2020; 17: 7186. doi: 10.3390/ijerph17197186.

48. Zembron-Lacny A., Tylutka A., Wacka E. et al. Intermittent Hypoxic Exposure Reduces Endothelial Dysfunction. Biomed Res Int. 2020; 2020: 6479630. doi: 10.1155/2020/6479630.

49. Korkushko O.V., Shatilo V.B., Ishchuk V.A. Effectiveness of intermittent normabaric hypoxic trainings in elderly patients with coronary artery disease Advances in Gerontology. 2010;23:476–482.

50. Levine B.D. Going High with Heart Disease: The Effect of HighAltitude Exposure in Older Individuals and Patients with Coronary Artery Disease. High Altitude Medicine & Biology. 2015; 16: 89–96. doi: 10.1089/ham.2015.0043.


Review

For citations:


Ignatenko G.A., Bagriy A.E., Ignatenko T.S., Tolstoy V.A., Evtushenko I.S., Mykhailichenko E.S. Possibilities and Prospects of Hypoxytherapy Application in Cardiology. The Russian Archives of Internal Medicine. 2023;13(4):245-252. https://doi.org/10.20514/2226-6704-2023-13-4-245-252. EDN: AHXHPL

Views: 863


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-6704 (Print)
ISSN 2411-6564 (Online)