Биомаркеры развития нежелательных сердечно-сосудистых событий при заболеваниях почек
https://doi.org/10.20514/2226-6704-2023-13-4-253-262
EDN: FJYEEH
Аннотация
В обзоре представлена информация по анализу научно-исследовательских сведений в отечественных и международных источниках литературы о факторах риска и биомаркерах развития неблагоприятных сердечно-сосудистых событий у пациентов с хронической болезнью почек и острым повреждением почек. Исследования биомаркеров имеют важное значение, особенно на ранних стадиях хронической болезни почек, когда профилактические и лечебные мероприятия работают более эффективно. В обзоре рассматриваются такие предикторы сердечно-сосудистых событий при хронической болезни почек как биомаркеры: окислительного стресса (малоновый диальдегид, ишемически-модифицированный альбумин; супероксид дисмутаза), воспаления (интерлейкин-6, интерлейкин-18), острого повреждения почек (молекула повреждения почек 1; нейтрофильный желатиназа-ассоциированный липокалин), кардиоспецифические биомаркеры (высокочувствительный тропонин) и циркулирующие микрорибонуклеиновые кислоты: 133а и 21, а также обсуждаются перспективы дальнейшего изучения биомаркеров. Отдельный акцент сделан на необходимости установления пороговых значений для различных биомаркеров при хронической болезни почек в зависимости от степени снижения функции почек, что позволит эффективно использовать эти показатели в клинической практике сердечно-сосудистых заболеваний, поскольку обычные референсные значения, используемые в общей популяции, будут выше при заболеваниях почек. В настоящее время известны референсные значения для тропонина и натрийуретических пептидов, которые в популяции с хронической болезни почек не достаточно изучены, по сравнению с общей популяцией.
Об авторах
Л. А. КамышниковаРоссия
Людмила Александровна Камышникова
Белгород
К. С. Горбачевская
Россия
Белгород
О. А. Ефремова
Россия
Белгород
Н. И. Оболонкова
Россия
Белгород
О. А. Болховитина
Россия
Белгород
Список литературы
1. Zhang J. Biomarkers of endothelial activation and dysfunction in cardiovascular diseases. Rev. Cardiovasc. Med. 2022; 23(2): 73. doi: 10.31083/j.rcm2302073.
2. Bikbov B, Purcell CA, Levey AS, et al. Global, regional, and national burden of chronic kidney disease. 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2020; 395: 709-733. doi: 10.1016/S0140-6736(20)30045-3.
3. Di Lullo L, Gorini A, Russo D. et al. Left ventricular hypertrophy in chronic kidney disease patients: From Pathophysiology to treatment. Cardiorenal Med. 2015; 5: 254-266. doi: 10.1159/000435838.
4. House A.A., Wanner C., Sarnak M.J. et al. Heart failure in chronic kidney disease: conclusions from a kidney disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2019; 95: 1304-1317. DOI: 10.1016/j.kint.2019.02.022.
5. Segall L, Nistor I, Covic A. Heart Failure in Patients with Chronic Kidney Disease: A Systematic Integrative Review. Biomed Res. Int. 2014; 2014: 21. doi: I: 10.1155/2014/937398.
6. Romero-Gonzаlez G., Ravassa S., Gonzаlez O. et al. Burden and challenges of heart failure in patients with chronic kidney disease. A call to action. Nefrologia (English Edition). 2020; 40(3): 223-236. doi: 10.1016/j.nefroe.2020.06.006.
7. Tawfik A.M., Tawfik H.M. Nontraditional risk factors in chronic kidney disease: correlation between creatinine clearance, Framingham risk score, endothelial dysfunction, and inflammation. Egypt J Intern Med. 2022; 34: 29. doi: 10.1186/s43162-022-00110-2.
8. Stopic B., Medic-Brkic B., Savic-Vujovic K. et al. Biomarkers and Predictors of Adverse Cardiovascular Events in Different Stages of Chronic Kidney Disease. Dose-Response. 2022; 20(3). doi:10.1177/15593258221127568.
9. Efremova O.A., Kamyshnikova L.A., Obolonkova N.I., et al. Mechanisms of Development of Heart Failure in Chronic Kidney Disease. Challenges in Modern Medicine. 2022; 45(3): 237–252. doi: 10.52575/2687-0940-2022-45-3-237-252.
10. Kong AS.-Y., Lai K.S., Hee C.-W. et al. Oxidative Stress Parameters as Biomarkers of Cardiovascular Disease towards the Development and Progression. Antioxidants. 2022; 11(6): 1175. doi: 10.3390/antiox11061175.
11. Afshinnia F., Zeng L., Byun, J. et al. Michigan Kidney Translational Core, C.I.G. Myeloperoxidase Levels and Its Product 3-Chlorotyrosine Predict Chronic Kidney Disease Severity and Associated Coronary Artery Disease. Am. J. Nephrol. 2017;46:73–81. doi: 10.1159/000477766.
12. Ighodaro O.M., Akinloye O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J Med. 2018;54(4):287-293. doi: 10.1016/j.ajme.2017.09.001.
13. Tsai Y.-T., Yeh H.-Y., Chao Ch.-T., et al. Superoxide Dismutase 2 (SOD2) in Vascular Calcification: A Focus on Vascular Smooth Muscle Cells, Calcification Pathogenesis, and Therapeutic Strategies Oxidative Medicine and Cellular Longevity. 2021;2021:6675548. doi: 10.1155/2021/6675548
14. Nepal M., Jaisawal S., Guragain M., et al. Ischemic Modified Albumin (IMA) As a Novel Marker for Ischemic Heart Disease and Surrogate Marker for Other High Oxidative -Ischemic Conditions. J Cardiovascular Disease Res. 2017;8(4):112-116. doi: 10.1155/2021/9945424. 1
15. Ozkurt S., Ozcan O., Dogan I. Assessment of Ischemia Modified Albumin as a Marker of Oxidative Stress in Chronic Kidney Disease. Saudi J Kidney Dis Transpl. 2021;(4): 1006-1012.
16. Wang, Y., Liang, Y., Zhao, W. et al. Circulating miRNA-21 as a diagnostic biomarker in elderly patients with type 2 cardiorenal syndrome. Sci Rep. 2020;10:4894. doi:10.1038/s41598-020-61836-zISI.
17. Freitas I.A., Lima N.A., Silva G.B.D.Jr et al. Novel biomarkers in the prognosis of patients with atherosclerotic coronary artery disease. Rev Port Cardiol. 2020;39(11):667-672. doi: DOI: 10.1016/j.repc.2020.05.010.
18. Li C., Zhang Z., Peng Y., et al. Plasma neutrophil gelatinase-associated lipocalin levels are associated with the presence and severity of coronary heart disease. PLoS One. 2019;14(8):e0220841. doi: 10.1371/journal.pone.0220841.
19. Medić B., Rovčanin B., Basta Jovanović G. et al. Kidney Injury Molecule-1 and Cardiovascular Diseases: From Basic Science to Clinical Practice. BioMed Res Int. 2015;2015:854070. doi: 10.1155/2015/854070.
20. Hasegawa M., Ishii J., Kitagawa F., et al. Plasma Neutrophil Gelatinase-Associated Lipocalin as a Predictor of Cardiovascular Events in Patients with Chronic Kidney Disease. BioMed Res Int. 2016;2016:8761475. doi: 10.1155/2016/8761475.
21. Liu K.D., Yang W., Go A.S., et al. Urine Neutrophil GelatinaseAssociated Lipocalin and Risk of Cardiovascular Disease and Death in CKD: Results From the Chronic Renal Insufficiency Cohort (CRIC) Study. Am J Kidney Dis. 2015;65(2):267-274. doi: 10.1053/j.ajkd.2014.07.025.
22. Park M., Hsu C.Y., Go A.S., et al. Urine kidney injury biomarkers and risks of cardiovascular disease events and all-cause death: The CRIC Study. Clin J Am Soc Nephrol. 2017;12(5):761-771. doi: 10.2215/CJN.08560816.
23. Feldreich T., Nowak C., Fall T., et al. Circulating proteins as predictors of cardiovascular mortality in end-stage renal disease. J Nephrol. 2019;32(1):111-119. doi: 10.1007/s40620-018-0556-5.
24. Ledwoch, J., Krauth, A., Kraxenberger, J. et al. Accuracy of highsensitive troponin depending on renal function for clinical outcome prediction in patients with acute heart failure. Heart Vessels. 2022;37;69–76. doi:10.1007/s00380-021-01890-3.
25. Michos E.D., Wilson L.M., Yeh H.C., et al. Рrognostic Value of Cardiac Troponin in Patients With Chronic Kidney Disease Without Suspected Acute Coronary Syndrome. Ann Intern Med. 2014;161(7):491-501. doi: 10.7326/M14-0743.
26. Острый инфаркт миокарда с подъемом сегмента ST электрокардиограммы. Клинические рекомендации 2020. Российский кардиологический журнал. 2020;25(11):4103. doi: 10.15829/15604071-2020-4103.
27. Kampmann J., Heaf J., Backer Mogensen C., et al. Troponin Cut-Offs for Acute Myocardial Infarction in Patients with Impaired Renal Function—A Systematic Review and Meta-Analysis. Diagnostics. 2022;12:276. doi:10.3390/diagnostics12020276.
28. Niizuma S., Iwanaga Y., Yahata T. et al. Renocardiovascular Biomarkers: from the Perspective of Managing Chronic Kidney Disease and Cardiovascular Disease. Front Cardiovasc Med. 2017;4:10. doi: 10.3389/fcvm.2017.00010.
29. Goldsmith S.R. Arginine Vasopressin Antagonism in Heart Failure: Current Status and Possible New Directions. J. Cardiol. 2019;74:49– 52. doi: 10.1016/j.jjcc.2019.03.001.
30. Schill F., Timpka S., Nilsson P.M., et al. Copeptin as a Predictive Marker of Incident Heart Failure. ESC Heart Fail. 2021;8:3180-3188. doi: 10.1002/ehf2.13439.
31. Jankowich M., Choudhary G. Endothelin-1 levels and cardiovascular events. Trends Cardiovasc Med. 2020 Jan;30(1):1-8. doi: 10.1016/j.tcm.2019.01.007.
32. Kocyigit I., Eroglu E., Kaynar A.S. et al. The association of endothelin-1 levels with renal survival in polycystic kidney disease patients. J Nephrol. 2019;32:83–91. doi: 10.1007/s40620-018-0514-2.
33. Batra G., Ghukasyan Lakic T., Lindbäck J. et al. STABILITY Investigators. Interleukin 6 and Cardiovascular Outcomes in Patients With Chronic Kidney Disease and Chronic Coronary Syndrome. JAMA Cardiol. 2021;6(12):1440-1445. doi: 10.1001/jamacardio.2021.3079.
34. Ефремова Е.В., Шутов А.М. Прогностические биомаркеры при хроническом кардиоренальном синдроме у пациентов старшей возрастной группы. Нефрология и диализ. 2022. 24(2):357-365. doi: 10.28996/2618-9801-2022-2-357-365
35. Schunk S.J., Triem S., Schmit D., et al. Interleukin-1α Is a Central Regulator of Leukocyte-Endothelial Adhesion in Myocardial Infarction and in Chronic Kidney Disease. Circulation. 2021;144(11):893-908. doi: 10.1161/CIRCULATIONAHA.121.053547.
36. Formanowicz D., Wanic-Kossowska M., Pawliczak E., Radom M., Formanowicz P. Usefulness of serum interleukin-18 in predicting cardiovascularmortality in patients with chronic kidney disease — systems and clinical approach. Sci Rep. 2015;5:18332. doi: 10.1038/srep18332.
37. Дзгоева Ф.У., Ремизов О.В., Голоева В.Г. и др. Обновленные механизмы кальцификации сердечно-сосудистой системы и ее коррекции при хронической болезни почек. Нефрология 2020;24(5):18-28. doi: 10.36485/1561-6274-2020-24-5-18-28.
38. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group. KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease–Mineral and Bone Disorder (CKD-MBD); Kidney Int Suppl. 2017;7:1-59. doi: 10.1016/j.kisu.2017.04.001.
39. Daisuke S., Noriaki T., Motoko T. et al. Associations Between Corrected Serum Calcium and Phosphorus Levels and Outcome in Dialysis Patients in the Kumamoto Prefecture. Hemodial Int. 2020; 24(2):202–211. doi: 10.1111/hdi.1282.
40. Raikou V.D. Serum phosphate and chronic kidney and cardiovascular disease: Phosphorus potential implications in general population. World J Nephrol. 2021;10(5):76-87. doi: 10.5527/wjn.v10.i5.76.
41. Takashi Y., Wakino S., Minakuchi H. et al. Circulating FGF23 is not associated with cardiac dysfunction, atherosclerosis, infection or inflammation in hemodialysis patients. J Bone Miner Metab. 2020;38(1):70–77. doi: 10.1007/s00774-019-010277.
42. 24. Waziri B., Duarte R., Naicker S. Chronic Kidney Disease–Mineral and Bone Disorder (CKD-MBD): Current Perspectives. Int J Nephrol Renovasc Dis. 2019;12:263-276. doi:10.2147/IJNRD.S191156.
43. Bäck M., Aranyi T., Cancela M.L., et al. Endogenous Calcification Inhibitors in the Prevention of Vascular Calcification: A Consensus Statement From the COST Action EuroSoftCalcNet. Front Cardiovasc Med. 2019;5:196. doi: 10.3389/fcvm.2018.00196.
44. Demir P., Erdenen F., Aral H., et al. Serum Osteoprotegerin Levels Related With Cardiovascular Risk Factors in Chronic Kidney Disease. J Clin Lab Anal. 2016;30(6):811-817. doi: 10.1002/jcla.21941.
45. Boutin L, Dépret F, Gayat E, Legrand M, Chadjichristos CE. Galectin-3 in Kidney Diseases: From an Old Protein to a New Therapeutic Target. International Journal of Molecular Sciences. 2022;23(6):3124. doi: 10.3390/ijms23063124.
46. Hara A., Niwa M., Noguchi K. et al. Galectin-3 as a Next-Generation Biomarker for Detecting Early Stage of Various Diseases. Biomolecules. 2020;10:389. doi: 10.3390/biom10030389.
47. Li M., Yuan Y., Guo K. et al. Value of Galectin-3 in Acute Myocardial Infarction. Am J Cardiovasc Drugs. 2020;20:333–342. doi:10.1007/s40256-019-00387-9.
48. Wyler Von Ballmoos M., Likosky D.S., Rezaee M.; et al. Galectin-3 Is Associated with Acute Kidney Injury after Cardiac Surgery. BMC Nephrol. 2018;19:280. doi: 10.1186/s12882-018-1093-0.
49. Tan K.C.B., Cheung, C.L., Lee, A.C.H. et al. Galectin-3 Is Independently Associated with Progression of Nephropathy in Type 2 Diabetes Mellitus. Diabetologia. 2018;61:1212–1219. doi: 10.1007/s00125-0184552-z.
50. Boutin L., Legrand M., Sadoune M et al. Galectin-3 Is Associated with Major Adverse Kidney Events and Death after ICU Admission. Crit. Care. 2022;26:13. doi: 10.1186/s13054-021-03878-x.
51. Desmedt V., Desmedt S., Delanghe J.R., Speeckaert R., Speeckaert M.M. Galectin-3 in Renal Pathology: More Than Just an Innocent Bystander? Am. J. Nephrol. 2016;43:305–317. doi: 10.1159/000446376.
52. Hara A., Niwa M., Kanayama T. et al. Galectin-3: A Potential Prognostic and Diagnostic Marker for Heart Disease and Detection of Early Stage Pathology. Biomolecules. 2020;10:1277. doi: 10.3390/biom10091277.
53. Prudhomme M., Coutrot M., Michel T. et al. Acute Kidney Injury Induces Remote Cardiac Damage and Dysfunction Through the Galectin-3 Pathway. JACC: Basic Transl. Sci. 2019;4:717–732. doi: 10.1016/j.jacbts.2019.06.005.
54. Kousios A., Kouis P., Panayiotou A.G. Matrix Metalloproteinases and Subclinical Atherosclerosis in Chronic Kidney Disease: A Systematic Review. Int. J. Nephrol. 2016;2016:9498013. doi: 10.1155/2016/9498013.
55. Ravarotto V., Simioni F., Pagnin E. et al. Oxidative stress—chronic kidney disease—cardiovascular disease: A vicious circle. Life Sci. 2018;210:125–131. doi: 10.1016/j.lfs.2018.08.067.
56. Гилязова ИР, Хасанова ГМ, Иванова ЕА, и др. Исследование профилей экспрессии экзосомальных микроРНК-126 и микроРНК-218 у пациентов с геморрагической лихорадкой с почечным синдромом (ГЛПС). Научные результаты биомедицинских исследований. 2022;8(4):424-438. doi: 10.18413/26586533-2022-8-4-0-2.
57. Silva D.C.P., Carneiro F.D., Almeida K.C. et al. Role of miRNAs on the Pathophysiology of Cardiovascular Diseases. Arq Bras Cardiol. 2018;11(05):738-746. doi: 10.5935/abc.20180215.
58. Romaine S.P.R., Tomaszewski M., Condorelli G. et al. MicroRNAs in cardiovasculare disease: an introduction for clinicians. Heart. 2015;101(12):921-928. doi: 10.1136/heartjnl-2013-305402.
59. Eyileten C., Wicik Z., De Rosa S. et al. MicroRNAs as Diagnostic and Prognostic Biomarkers in Ischemic Stroke—A Comprehensive Review and Bioinformatic Analysis. Cells. 2018;7(12):249. doi: 10.3390/cells7120249.
60. Elmadbouly A.A., Hamdy R.M., Elsaeed A.M. et al. The Plasma Level of miRNA-133a as a Novel Biomarker for Prediction of Left Ventricular Hypertrophy and Dysfunction in Hemodialysis Patients. Am J Biochem. 2017;7(5):91-99. doi: 10.5923/j.ajb.20170705.02.
61. Buliga-Finis O.N., Ouatu A., Tanase D.M., et al. Managing Anemia: Point of Convergence for Heart Failure and Chronic Kidney Disease? Life. 2023;13(6):1311. doi: 10.3390/life13061311
Рецензия
Для цитирования:
Камышникова Л.А., Горбачевская К.С., Ефремова О.А., Оболонкова Н.И., Болховитина О.А. Биомаркеры развития нежелательных сердечно-сосудистых событий при заболеваниях почек. Архивъ внутренней медицины. 2023;13(4):253-262. https://doi.org/10.20514/2226-6704-2023-13-4-253-262. EDN: FJYEEH
For citation:
Kamyshnikova L.A., Gorbachevskaya K.S., Efremova O.A., Obolonkova N.I., Bolkhovitina O.A. Biomarkers of Adverse Cardiovascular Events in Kidney Disease. The Russian Archives of Internal Medicine. 2023;13(4):253-262. https://doi.org/10.20514/2226-6704-2023-13-4-253-262. EDN: FJYEEH