Preview

The Russian Archives of Internal Medicine

Advanced search

Changes in the Human Blood System in Patients with COVID-19

https://doi.org/10.20514/2226-6704-2023-13-5-335-343

Abstract

   As is known, the SARS-CoV-2 virus affects almost all human systems, organs and tissues, causing their damage to a greater or lesser extent. Follow-up of COVID-19 patients worldwide.indicates significant changes occurring in the hematopoiesis system and morphology of blood cells. This review is devoted to the analysis of literature data on the effect of the SARS-CoV-2 virus on changes in the indicators of the human blood system, which is important in the practical work of all healthcare professionals.

About the Authors

G. Sh. Safuanova
Federal State Budgetary Educational Institution of Higher Education «Bashkir State Medical University» of the Ministry of Healthcare of the Russian Federation
Russian Federation

Guzyal Sh. Safuanova

Department of Therapy and General Medical Practice with a Course of Geriatrics

Ufa



A. S. Konstantinova
State Budgetary Healthcare Institution «Kuvatov Republican Clinical Hospital» of the Ufa Healthcare Department
Russian Federation

Ufa



N. R. Ryabchikova
Federal State Budgetary Educational Institution of Higher Education «Bashkir State Medical University» of the Ministry of Healthcare of the Russian Federation
Russian Federation

Department of Therapy and General Medical Practice with a Course of Geriatrics

Ufa



D. R. Safuanova
Federal State Budgetary Institution “National Medical Research Center of Hematology” of the Ministry of Health of the Russian Federation
Russian Federation

Moscow



References

1. Wenzhong L., Hualan L. COVID-19: Attacks the 1-Beta Chain of Hemoglobin and Captures the Porphyrin to Inhibit Human Heme Metabolism. Biological and Medicinal Chemistry. 2020 Mar; v5:38 Preprint. doi.:10.26434/chemrxiv. 11938173.

2. Ehsani S. COVID-19 and iron dysregulation: distant sequence similarity between hepcidin and the novel coronavirus spike glycoprotein. Biology Direct. 2020;15 (19):1-13. Doi:10.1186/s13062-020-00275-2

3. Hirschhorn T, Stockwell BR. The development of the concept of ferroptosis. Free Radic Biol Med 2019 Mar; 133: 130-143. doi: 10.1016/j.freeradbiomed.2018.09.043.

4. Yevtyugina N.G., Sannikova S.S., Peshkova A.D., et al. Quantitative and qualitative changes of blood cells in COV ID-19. Kazan medical journal. 2021; 102 (2): 141-155. DOI: 10.17816/KMJ2021-141. [in Russian]

5. Zhao J., Yang Y., Huang H. et al. Relationship between the ABO Blood Group and the COVID-19 Susceptibility. Clinical Infectious Diseases 2021;.73(2):328-331, doi: 10.1093/cid/ciaa1150

6. Zadomina D.N., Skvortsov V.V. Change of hematological parameters in COVID-19. Lechaschi Vrach. 2022; 11 (25): 30-36. DOI: 10.51793/OS.2022.25.11.005. [in Russian]

7. Liu Y, Sun W, Guo Y, et al. Association between platelet parameters and mortality in coronavirus disease 2019: Retrospective cohort study. Platelets. 2020 May 18; 31(4): 490-496. doi: 10.1080/09537104.2020.1754383.

8. Zhang Y, Zeng X, Jiao Y, et al. Mechanisms involved in the development of thrombocytopenia in patients with COVID-19. Thromb Res. 2020 Sep; 193: 110-115. doi: 10.1016/j.thromres.2020.06.008.

9. Guan WJ, Ni ZY, Hu Y, et al. China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020 Apr 30; 382(18): 1708-1720. doi: 10.1056/NEJMoa2002032.

10. Yang X, Yang Q, Wang Y, et al. Thrombocytopenia and its association with mortality in patients with COVID-19. J ThrombHaemost. 2020 Jun; 18(6): 1469-1472. doi: 10.1111/jth.14848. Epub 2020 May 4. PMID: 32302435.

11. Levi M, Thachil J, Iba T, Levy JH. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020 Jun; 7(6): e438-e440. doi: 10.1016/S2352-3026(20)30145-9. Epub 2020 May 11. PMID: 32407672; PMCID: PMC7213964.

12. Thachil J. What do monitor platelet counts in COVID-19 teach us? J Thromb Haemost. 2020 Aug;18(8): 2071-2072. doi: 10.1111/jth.14879.

13. Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. ClinChimActa.2020 Jul; 506: 145-148. doi: 10.1016/j.cca.2020.03.022.

14. Henry BM, de Oliveira MHS, Benoit S, Plebani M, et al. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chem Lab Med. 2020 Jun 25; 58(7): 1021-1028. doi: 10.1515/cclm-2020-0369.

15. Bomhof G, Mutsaers PGNJ, Leebeek FWG, et al. COVID-19-associated immune thrombocytopenia. Br J Haematol. 2020 Jul; 190(2): e61-e64. doi: 10.1111/bjh.16850.

16. Chabert A, Hamzeh-Cognasse H, Pozzetto B, et al. Human platelets and their capacity of binding viruses: meaning and challenges? BMC Immunol.2015 Apr 28; 16: 26. doi: 10.1186/s12865-015-0092-1.

17. Assinger A. Platelets and infection — an emerging role of platelets in viral infection.. Frontiers in immunology. 2014, Dec 18; vol. 5: 649. doi: 10.3389/fimmu.2014.00649

18. Seyoum M, Enawgaw B, Melku M. Human blood platelets and viruses: defense mechanism and role in the removal of viral pathogens. Thromb J. 2018 Jul 17; 16: 16. doi: 10.1186/s12959-018-0170-8.

19. Lador A, Leshem-Lev D, Spectre G, et al. Characterization of surface antigens of reticulated immature platelets. J Thromb Thrombolysis. 2017 Oct; 44(3): 291-297. doi: 10.1007/s11239-017-1533-x.

20. Handtke S, Steil L, Palankar R, et al. Role of Platelet Size Revisited-Function and Protein Composition of Large and Small Platelets. ThrombHaemost. 2019 Mar; 119(3): 407-420. doi: 10.1055/s-0039-1677875.

21. Hille L, Lenz M, Vlachos A, et al. Ultrastructural, transcriptional, and functional differences between human reticulated and non-reticulated platelets. J ThrombHaemost. 2020 Aug; 18(8): 2034-2046. doi: 10.1111/jth.14895.

22. Handtke S, Thiele T. Large and small platelets-(When) do they differ? J ThrombHaemost. 2020 Jun; 18(6): 1256-1267. doi: 10.1111/jth.14788.

23. Zhang S, Liu Y, Wang X, et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J HematolOncol. 2020 Sep 4; 13(1): 120. doi: 10.1186/s13045-020-00954-7.

24. Hottz ED, Azevedo-Quintanilha IG, Palhinha L, et al. Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood. 2020 Sep 10; 136(11): 1330-1341. doi: 10.1182/blood.2020007252.

25. Manne BK, Denorme F, Middleton EA, et al. Platelet gene expression and function in patients with COVID-19. Blood. 2020 Sep 10; 136(11): 1317-1329. doi: 10.1182/blood.2020007214.

26. Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation.Blood. 2020 Jun 4; 135(23): 2033-2040. doi: 10.1182/blood.2020006000.

27. Spyropoulos AC, Levy JH, Ageno W, et al; Subcommittee on Perioperative, Critical Care Thrombosis, Haemostasis of the Scientific, Standardization Committee of the International Society on Thrombosis and Haemostasis. Scientific and Standardization Committee communication: Clinical guidance on the diagnosis, prevention, and treatment of venous thromboembolism in hospitalized patients with COVID-19. J ThrombHaemost. 2020 Aug; 18(8): 1859-1865. doi: 10.1111/jth.14929.

28. Helms J, Tacquard C, Severac F, et al; CRICS TRIGGERSEP Group (Clinical Research in Intensive Care and Sepsis Trial Group for Global Evaluation and Research in Sepsis). High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020 Jun; 46(6): 1089-1098. doi: 10.1007/s00134-020-06062-x.

29. Han H, Yang L, Liu R, et al. Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clin Chem Lab Med. 2020 Jun 25; 58(7): 1116-1120. doi: 10.1515/cclm-2020-0188.

30. Li, Q., Cao, Y., Chen, L. et al. Hematological features of persons with COVID-19. Leukemia. 2020.34:2163–2172 doi:10.1038/s41375-020-0910-1

31. Thachil J, Cushman M, Srivastava A. A proposal for staging COVID-19 coagulopathy.Res PractThrombHaemost. 2020; 4(5): 731-736. Published 2020 Jul 6. doi: 10.1002/rth2.12372

32. Escher R, Breakey N, Lämmle B. Severe COVID-19 infection associated with endothelial activation. Thromb Res. 2020 Jun; 190: 62. doi: 10.1016/j.thromres.2020.04.014.

33. Othman M, Labelle A, Mazzetti I, et al. Adenovirus-induced thrombocytopenia: the role of von Willebrand factor and P-selectin in mediating accelerated platelet clearance. Blood. 2007 Apr 1; 109(7): 2832-9. doi: 10.1182/blood-2006-06-032524. PMID: 17148587.

34. Escher R, Breakey N, Lämmle B. ADAMTS13 activity, von Willebrand factor, factor VIII and D-dimers in COVID-19 inpatients. Thromb Res. 2020 Aug; 192: 174-175. doi: 10.1016/j.thromres.2020.05.032.

35. Martinelli N, Montagnana M, Pizzolo F, et al. A relative ADAMTS13 deficiency supports the presence of a secondary microangiopathy in COVID 19. Thromb Res. 2020 Sep; 193: 170-172. doi: 10.1016/j.thromres.2020.07.034.

36. Blasi A, von Meijenfeldt FA, Adelmeijer J, et al. In vitro hypercoagulability and ongoing in vivo activation of coagulation and fibrinolysis in COVID-19 patients on anticoagulation. J ThrombHaemost. 2020 Oct; 18(10): 2646-2653. doi: 10.1111/jth.15043.

37. O. Otto, P. Rosendahl, et al., J. Guck Real-time deformability cytometry: on-the-fly cell mechanical phenotyping/ Nature Methods, 2015, 12: 199-202 doi: 10.1038/nmeth.3281.

38. Kubánková M, Hohberger B, Hoffmanns J, et al. Physical phenotype of blood cells is altered in COVID-19. Biophys J. 2021 Jul 20; 120(14): 2838-2847. doi: 10.1016/j.bpj.2021.05.025.

39. Kaur G, Sandeep F, Olayinka O, et al. Morphologic Changes in Circulating Blood Cells of COVID-19 Patients. Cureus. 2021 Feb 18; 13(2): 13416. doi: 10.7759/cureus.13416. PMID: 33758711; PMCID: PMC7978157

40. Bagnenko, S.F., Rassokhin, V.V., Trofimova et al. Evolution of the COVID-19 pandemic. Baltic Medical Education Center. 2021: 410 р. [in Russian]

41. Ministry of Health of the Russian Federation. Temporary methodological recommendations: Prevention, Diagnosis and Treatment of New Coronavirus Infection (COVID-19). 2022, Version 16 :249. [in Russian]

42. Sadretdinov M.A., Timerbulatov Sh.V., Valishin D.A., et al. COVID-19 diagnostics: Unused technologies — General blood analysis capabilities // Bashkortostan Medical Journal. 2020. vol. 15, 3(87): 31-34. [in Russian]

43. Timofeeva N.Yu., Kostrova O.Yu., Stomenskaya I.S., et al. Changes in the indicators of the general blood test and coagulogram in the mild course of coronavirus infection . Acta medica Eurasica. 2021. 2: 44-49. DOI: 10.47026/2413-4864-2021-2-44-49. [in Russian]

44. Gubenko N.S., Budko A.A., Plisyuk A.G. et al. The relationship of the indicators of the general blood test with the severity of COVID-19 in hospitalized patients. South-Russian Journal of Therapeutic Practice. 2021; 2(1): 90-101. doi. 10.21886/2712-8156-2021-2-1-90-101. [in Russian]


Review

For citations:


Safuanova G.Sh., Konstantinova A.S., Ryabchikova N.R., Safuanova D.R. Changes in the Human Blood System in Patients with COVID-19. The Russian Archives of Internal Medicine. 2023;13(5):335-343. https://doi.org/10.20514/2226-6704-2023-13-5-335-343

Views: 481


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-6704 (Print)
ISSN 2411-6564 (Online)