Neurocognitive Disorders in COVID-19 Patients: Controversed and Unresolved Issues
https://doi.org/10.20514/2226-6704-2023-13-5-344-351
Abstract
New Coronavirus Infection (COVID-19) is an infectious disease caused by Severe Acute Respiratory Syndrome coronavirus-2 (SARS-CoV-2). Since 2019, a large number of studies on cognitive impairment in the background of COVID-19 have emerged, and “long COVID” is among them. A non-systematic review based on 2019-2022 studies provides information on the severity of cognitive changes in patients with COVID-19, diagnostic methods that can detect these cognitive impairment and long-term neuropsychiatric and cognitive outcomes that may pose a serious public health challenge.
Keywords
About the Authors
D. P. KuznetsovaRussian Federation
Daria P. Kuznetsova
Ulyanovsk
E. V. Efremova
Russian Federation
Ulyanovsk
V. V. Gnoevykh
Russian Federation
Ulyanovsk
References
1. van den Borst B., Peters J.B., Brink M., et al. Comprehensive Health Assessment 3 Months After Recovery From Acute Coronavirus Disease 2019 (COVID-19). Clin Infect Dis. 2021; 73(5): e1089-e1098. doi: 10.1093/cid/ciaa1750
2. Pistarini C., Fiabane E., Houdayer E., et al. Cognitive and Emotional Disturbances Due to COVID-19: An Exploratory Study in the Rehabilitation Setting. Front Neurol. 2021; 12:643646. doi: 10.3389/fneur.2021.643646.
3. Alemanno F, Houdayer E, Parma A, et al. COVID-19 cognitive deficits after respiratory assistance in the subacute phase: A COVID-rehabilitation unit experience. PLOS ONE. 2021; 16(2): e0246590. doi: 10.1371/journal.pone.0246590
4. Chen R., Wang K., Yu J., et al. The Spatial and Cell-Type Distribution of SARS-CoV-2 Receptor ACE2 in the Human and Mouse Brains. Front Neurol. 2021; 11:573095. doi: 10.3389/fneur.2020.573095. eCollection 2020.
5. Lukiw W.J., Pogue A., Hill J.M. SARS-CoV-2 Infectivity and Neurological Targets in the Brain. Cell Mol Neurobiol. 2022; 42(1): 217-224. doi: 10.1007/s10571-020-00947-7
6. Al-Sarraj S., Troakes C., Hanley B., et al. Invited Review: The spectrum of neuropathology in COVID-19. Neuropathol Appl Neurobiol. 2021; 47(1): 3-16. doi: 10.1111/nan.12667
7. Wang C., Zhang M., Garcia G., et al. ApoE-Isoform-Dependent SARS-CoV-2 Neurotropism and Cellular Response. Cell Stem Cell. 2021; 28(2): 331-342.e5. doi: 10.1016/j.stem.2020.12.018
8. Jose R.J., Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med. 2020; 8(6): e46-e47. doi: 10.1016/S2213-2600(20)30216-2
9. Herold T, Jurinovic V, Arnreich C, et al. Elevated levels of IL-6 and CRP predict the need for mechanical ventilation in COVID-19. J Allergy Clin Immunol. 2020; 146(1): 128-136.e4. doi: 10.1016/j.jaci.2020.05.008
10. Sieracka J., Sieracki P., Kozera G., et al. COVID-19 — neuropathological point of view, pathobiology, and dilemmas after the first year of the pandemic struggle. Folia Neuropathol. 2021; 59(1): 1-16. doi: 10.5114/fn.2021.105128
11. Lechien J.R., Chiesa-Estomba C.M., Vaira L.A., et al. Epidemiological, otolaryngological, olfactory and gustatory outcomes according to the severity of COVID-19: a study of 2579 patients. Eur Arch Otorhinolaryngol. 2021; 278(8): 2851-2859. doi: 10.1007/s00405-020-06548-w
12. Meinhardt J., Radke J., Dittmayer C., et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci. 2021; 24(2): 168-175. doi: 10.1038/s41593-020-00758-5
13. Douaud G., Lee S., Alfaro-Almagro F., et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature. 2022; 604(7907): 697-707. doi: 10.1038/s41586-022-04569-5
14. Hugon J., Msika E.F., Queneau M., et al. Long COVID: cognitive complaints (brain fog) and dysfunction of the cingulate cortex. J Neurol. 2022; 269(1): 44-46. doi: 10.1007/s00415-021-10655-x
15. Kim S.K., Jeong H., Im J.J., et al. PET Hypometabolism of the Prefrontal-Cingulate Cortices in Internet Gaming Disorder. Front Psychiatry. 2021; 11: 566518. doi: 10.3389/fpsyt.2020.566518
16. Hosp J.A., Dressing A., Blazhenets G., et al. Cognitive impairment and altered cerebral glucose metabolism in the subacute stage of COVID-19. Brain. 2021; 144(4): 1263-1276. doi: 10.1093/brain/awab009
17. Guedj E., Million M., Dudouet P., et al. 18F-FDG brain PET hypometabolism in post-SARS-CoV-2 infection: substrate for persistent/delayed disorders? Eur J Nucl Med Mol Imaging. 2021; 48(2): 592-595. doi: 10.1007/s00259-020-04973-x
18. Blazhenets G., Schroeter N., Bormann T., et al. Slow but Evident Recovery from Neocortical Dysfunction and Cognitive Impairment in a Series of Chronic COVID-19 Patients. J Nucl Med. 2021; 62(7): 910-915. doi: 10.2967/jnumed.121.262128
19. Shimada H., Doi T., Lee S., et al. Reversible predictors of reversion from mild cognitive impairment to normal cognition: a 4-year longitudinal study. Alzheimers Res Ther. 2019; 11(1): 24. doi: 10.1186/s13195-019-0480-5
20. Aiello E.N., Fiabane E., Manera M.R., et al. Screening for cognitive sequelae of SARS-CoV-2 infection: a comparison between the Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA). Neurol Sci. 2022; 43(1): 81-84. doi: 10.1007/s10072-021-05630-3
21. Варако Н.А., Архипова Д.В., Ковязина М.С., с соавт. Адденбрукская шкала оценки когнитивных функций III (Adden-brooke s cognitive examination III — ACE-III): лингвокультурная адаптация русскоязычной версии. Анналы клинической и экспериментальной неврологии 2022; 16(1): 53-58. doi: 10.54101/ACEN.2022.1.7
22. Mazza M.G., Palladini M., De Lorenzo R., et al. Persistent psychopathology and neurocognitive impairment in COVID-19 survivors: Effect of inflammatory biomarkers at three-month follow-up. Brain Behav Immun. 2021; 94: 138-147. doi: 10.1016/j.bbi.2021.02.021
23. Garrigues E, Janvier P, Kherabi Y, et al. Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19. J Infect. 2020; 81(6): e4-e6. doi: 10.1016/j.jinf.2020.08.029
24. Almeria M., Cejudo J.C., Sotoca J., et al. Cognitive profile following COVID-19 infection: Clinical predictors leading to neuropsychological impairment. Brain Behav Immun — Health. 2020; 9: 100163. doi: 10.1016/j.bbih.2020.100163
25. Davis H.E., Assaf G.S., McCorkell L., et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. eClinicalMedicine. 2021; 38. doi: 10.1016/j.eclinm.2021.101019
26. Liu Y.H., Chen Y., Wang Q.H., et al. One-Year Trajectory of Cognitive Changes in Older Survivors of COVID-19 in Wuhan, China: A Longitudinal Cohort Study. JAMA Neurol. 2022; 79(5): 509-517. doi: 10.1001/jamaneurol.2022.0461
27. Méndez R., Balanzá-Martínez V., Luperdi S., et al. Short-term neuropsychiatric outcomes and quality of life in COVID-19 survivors. J Intern Med. 2021; 290(3): 621-631. doi: 10.1111/joim.13262
28. Darley D.R., Dore G.J., Cysique L., et al. Persistent symptoms up to four months after community and hospital-managed SARS-CoV-2 infection. Med J Aust. 2021; 214(6): 279-280. doi: 10.5694/mja2.50963
29. Moretta P., Ambrosino P., Lanzillo A., et al. Cognitive Impairment in Convalescent COVID-19 Patients Undergoing Multidisciplinary Rehabilitation: The Association with the Clinical and Functional Status. Healthcare. 2022; 10(3): 480. doi: 10.3390/healthcare10030480
30. Nersesjan V., Fonsmark L., Christensen R.H. B., et al. Neuropsychiatric and Cognitive Outcomes in Patients 6 Months After COVID-19 Requiring Hospitalization Compared With Matched Control Patients Hospitalized for Non -COVID-19 Illness. JAMA Psychiatry. 2022; 79(5): 486-497. doi: 10.1001/jamapsychiatry.2022.0284.
31. Borland E., Nägga K., Nilsson P.M., et al. The Montreal Cognitive Assess ment: Normative Data from a Large Swedish Population-Based Cohort. J Alzheimers Dis. 2017; 59(3): 893-901. doi: 10.3233/JAD-170203
32. Yelin D., Margalit I., Nehme M., et al. Patterns of Long COVID Symptoms: A Multi-Center Cross Sectional Study. J Clin Med. 2022; 11(4): 898. doi: 10.3390/jcm11040898
33. Herridge M.S., Moss M., Hough C.L,. et al. Recovery and outcomes after the acute respiratory distress syndrome (ARDS) in p atients and their family caregivers. Intensive Care Med. 2016; 42(5): 725-738. doi: 10.1007/s00134-016-4321-8
34. Liu Y.H., Wang Y.R., Wang Q.H., et al. Post-infection cognitive impairments in a cohort of elderly patients with COVID-19. Mol Neurodegener. 2021; 16(1): 48. doi: 10.1186/s13024-021-00469-w
35. Palta P., Albert M.S., Gottesman R.F. Heart health meets cognitive health: evidence on the role of blood pressure. Lancet Neurol. 2021; 20(10): 854-867. doi:10.1016/S1474-4422(21)00248-9
36. Taquet M., Geddes J.R., Husain M., et al. 6-month neurological and psychiatric outcomes in 236 37 9 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry. 2021; 8(5): 416-427. doi: 10.1016/S2215-0366(21)00084-5
37. Kuo C.L., Pilling L.C., Atkins J.L., et al. ApoE e4e4 Genotype and Mortality With COVID-19 in UK Biobank. J Gerontol Ser A. 2020; 75(9): 1801-1803. doi: 10.1093/gerona/glaa169
38. Перенести в английский вариант
39. van den Borst B., Peters J.B., Brink M., et al. Comprehensive Health Assessment 3 Months After Recovery From Acute Coronavirus Disease 2019 (COVID-19). Clin Infect Dis. 2021; 73(5): e1089-e1098. doi: 10.1093/cid/ciaa1750
40. Pistarini C., Fiabane E., Houdayer E., et al. Cognitive and Emotional Disturbances Due to COVID-19: An Exploratory Study in the Rehabilitation Setting. Front Neurol. 2021; 12:643646. doi: 10.3389/fneur.2021.643646.
41. Alemanno F, Houdayer E, Parma A, et al. COVID-19 cognitive deficits after respiratory assistance in the subacute phase: A COVID-rehabilitation unit experience. PLOS ONE. 2021; 16(2): e0246590. doi: 10.1371/journal.pone.0246590
42. Chen R., Wang K., Yu J., et al. The Spatial and Cell-Type Distribution of SARS-CoV-2 Receptor ACE2 in the Human and Mouse Brains. Front Neurol. 2021; 11:573095. doi: 10.3389/fneur.2020.573095. eCollection 2020.
43. Lukiw W.J., Pogue A., Hill J.M. SARS-CoV-2 Infectivity and Neurological Targets in the Brain. Cell Mol Neurobiol. 2022; 42(1): 217-224. doi: 10.1007/s10571-020-00947-7
44. Al-Sarraj S., Troakes C., Hanley B., et al. Invited Review: The spectrum of neuropathology in COVID-19. Neuropathol Appl Neurobiol. 2021; 47(1): 3-16. doi: 10.1111/nan.12667
45. Wang C., Zhang M., Garcia G., et al. ApoE-Isoform-Dependent SARS-CoV-2 Neurotropism and Cellular Response. Cell Stem Cell. 2021; 28(2): 331-342.e5. doi: 10.1016/j.stem.2020.12.018
46. Jose R.J., Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med. 2020; 8(6): e46-e47. doi: 10.1016/S2213-2600(20)30216-2
47. Herold T, Jurinovic V, Arnreich C, et al. Elevated levels of IL-6 and CRP predict the need for mechanical ventilation in COVID-19. J Allergy Clin Immunol. 2020; 146(1): 128-136.e4. doi: 10.1016/j.jaci.2020.05.008
48. Sieracka J., Sieracki P., Kozera G., et al. COVID-19 — neuropathological point of view, pathobiology, and dilemmas after the first year of the pandemic struggle. Folia Neuropathol. 2021; 59(1): 1-16. doi: 10.5114/fn.2021.105128
49. Lechien J.R., Chiesa-Estomba C.M., Vaira L.A., et al. Epidemiological, otolaryngological, olfactory and gustatory outcomes according to the severity of COVID-19: a study of 2579 patients. Eur Arch Otorhinolaryngol. 2021; 278(8): 2851-2859. doi: 10.1007/s00405-020-06548-w
50. Meinhardt J., Radke J., Dittmayer C., et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci. 2021; 24(2): 168-175. doi: 10.1038/s41593-020-00758-5
51. Douaud G., Lee S., Alfaro-Almagro F., et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature. 2022; 604(7907): 697-707. doi: 10.1038/s41586-022-04569-5
52. Hugon J., Msika E.F., Queneau M., et al. Long COVID: cognitive complaints (brain fog) and dysfunction of the cingulate cortex. J Neurol. 2022; 269(1): 44-46. doi: 10.1007/s00415-021-10655-x
53. Kim S.K., Jeong H., Im J.J., et al. PET Hypometabolism of the Prefrontal-Cingulate Cortices in Internet Gaming Disorder. Front Psychiatry. 2021; 11: 566518. doi: 10.3389/fpsyt.2020.566518
54. Hosp J.A., Dressing A., Blazhenets G., et al. Cognitive impairment and altered cerebral glucose metabolism in the subacute stage of COVID-19. Brain. 2021; 144(4): 1263-1276. doi: 10.1093/brain/awab009
55. Guedj E., Million M., Dudouet P., et al. 18F-FDG brain PET hypometabolism in post-SARS-CoV-2 infection: substrate for persistent/delayed disorders? Eur J Nucl Med Mol Imaging. 2021; 48(2): 592-595. doi: 10.1007/s00259-020-04973-x
56. Blazhenets G., Schroeter N., Bormann T., et al. Slow but Evident Recovery from Neocortical Dysfunction and Cognitive Impairment in a Series of Chronic COVID-19 Patients. J Nucl Med. 2021; 62(7): 910-915. doi: 10.2967/jnumed.121.262128
57. Shimada H., Doi T., Lee S., et al. Reversible predictors of reversion from mild cognitive impairment to normal cognition: a 4-year longitudinal study. Alzheimers Res Ther. 2019; 11(1): 24. doi: 10.1186/s13195-019-0480-5
58. Aiello E.N., Fiabane E., Manera M.R., et al. Screening for cognitive sequelae of SARS-CoV-2 infection: a comparison between the Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA). Neurol Sci. 2022; 43(1): 81-84. doi: 10.1007/s10072-021-05630-3
59. Varako N.A., Arkhipova D.V., Kovyazina M.S., et al. Addenbrooke’s cognitive assessment scale III (Addenbrooke’s cognitive examination III — ACE-III): linguocultural adaptation of the Russian version. Annals of Clinical and Experimental Neurology 2022; 16(1): 53-58. doi: 10.54101/ACEN.2022.1.7 [in Russian].
60. Mazza M.G., Palladini M., De Lorenzo R., et al. Persistent psychopathology and neurocognitive impairment in COVID-19 survivors: Effect of inflammatory biomarkers at three-month follow-up. Brain Behav Immun. 2021; 94: 138-147. doi: 10.1016/j.bbi.2021.02.021
61. Garrigues E, Janvier P, Kherabi Y, et al. Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19. J Infect. 2020; 81(6): e4-e6. doi: 10.1016/j.jinf.2020.08.029
62. Almeria M., Cejudo J.C., Sotoca J., et al. Cognitive profile following COVID-19 infection: Clinical predictors leading to neuropsychological impairment. Brain Behav Immun — Health. 2020; 9: 100163. doi: 10.1016/j.bbih.2020.100163
63. Davis H.E., Assaf G.S., McCorkell L., et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. eClinicalMedicine. 2021; 38. doi: 10.1016/j.eclinm.2021.101019
64. Liu Y.H., Chen Y., Wang Q.H., et al. One-Year Trajectory of Cognitive Changes in Older Survivors of COVID-19 in Wuhan, China: A Longitudinal Cohort Study. JAMA Neurol. 2022; 79(5): 509-517. doi: 10.1001/jamaneurol.2022.0461
65. Méndez R., Balanzá-Martínez V., Luperdi S., et al. Short-term neuropsychiatric outcomes and quality of life in COVID-19 survivors. J Intern Med. 2021; 290(3): 621-631. doi: 10.1111/joim.13262
66. Darley D.R., Dore G.J., Cysique L., et al. Persistent symptoms up to four months after community and hospital-managed SARS-CoV-2 infection. Med J Aust. 2021; 214(6): 279-280. doi: 10.5694/mja2.50963
67. Moretta P., Ambrosino P., Lanzillo A., et al. Cognitive Impairment in Convalescent COVID-19 Patients Undergoing Multidisciplinary Rehabilitation: The Association with the Clinical and Functional Status. Healthcare. 2022; 10(3): 480. doi: 10.3390/healthcare10030480
68. Nersesjan V., Fonsmark L., Christensen R.H. B., et al. Neuropsychiatric and Cognitive Outcomes in Patients 6 Months After COVID-19 Requiring Hospitalization Compared With Matched Control Patients Hospitalized for Non -COVID-19 Illness. JAMA Psychiatry. 2022; 79(5): 486-497. doi: 10.1001/jamapsychiatry.2022.0284.
69. Borland E., Nägga K., Nilsson P.M., et al. The Montreal Cognitive Assess ment: Normative Data from a Large Swedish Population-Based Cohort. J Alzheimers Dis. 2017; 59(3): 893-901. doi: 10.3233/JAD-170203
70. Yelin D., Margalit I., Nehme M., et al. Patterns of Long COVID Symptoms: A Multi-Center Cross Sectional Study. J Clin Med. 2022; 11(4): 898. doi: 10.3390/jcm11040898
71. Herridge M.S., Moss M., Hough C.L,. et al. Recovery and outcomes after the acute respiratory distress syndrome (ARDS) in p atients and their family caregivers. Intensive Care Med. 2016; 42(5): 725-738. doi: 10.1007/s00134-016-4321-8
72. Liu Y.H., Wang Y.R., Wang Q.H., et al. Post-infection cognitive impairments in a cohort of elderly patients with COVID-19. Mol Neurodegener. 2021; 16(1): 48. doi: 10.1186/s13024-021-00469-w
73. Palta P., Albert M.S., Gottesman R.F. Heart health meets cognitive health: evidence on the role of blood pressure. Lancet Neurol. 2021; 20(10): 854-867. doi:10.1016/S1474-4422(21)00248-9
74. Taquet M., Geddes J.R., Husain M., et al. 6-month neurological and psychiatric outcomes in 236 37 9 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry. 2021; 8(5): 416-427. doi: 10.1016/S2215-0366(21)00084-5
75. Kuo C.L., Pilling L.C., Atkins J.L., et al. ApoE e4e4 Genotype and Mortality With COVID-19 in UK Biobank. J Gerontol Ser A. 2020; 75(9): 1801-1803. doi: 10.1093/gerona/glaa169
Review
For citations:
Kuznetsova D.P., Efremova E.V., Gnoevykh V.V. Neurocognitive Disorders in COVID-19 Patients: Controversed and Unresolved Issues. The Russian Archives of Internal Medicine. 2023;13(5):344-351. https://doi.org/10.20514/2226-6704-2023-13-5-344-351