Idiopathic Pulmonary Fibrosis and Hypersensitive Pneumonitis: A Fresh View on The Role of Genetic and Epigenetic Factors in The Development and Course of Diseases
https://doi.org/10.20514/2226-6704-2024-14-6-405-418
EDN: LYHBFO
Abstract
Given their ubiquitous progressive nature and unfavorable prognosis, interstitial lung diseases (ILD), especially such common variants as idiopathic pulmonary fibrosis (IPF) and hypersensitivity pneumonitis (HP), rightly attract considerable attention from clinicians and scientists worldwide. In recent years, the need for an in-depth study of the clinical and pathogenetic features of ILD, improvement of existing approaches and development of effective personalized approaches to the management of this category of patients, based on the most promising targets of action, among which genetic and epigenetic variants are increasingly being considered, has become increasingly important. The authors conducted a non-systematic, descriptive review of the literature aimed at systematizing data on the main known genetic and epigenetic mechanisms involved in the pathogenesis and formation of specific clinical manifestations of IPF and HP. Mutations in genes encoding telomerase, synthesis of fibrogenesis factors, polymorphisms of mucin genes, lung surfactant are highlighted separately, and the main epigenetic changes involved in fibrogenesis processes are highlighted separately. Prospects of genetic and epigenetic studies for new pharmacological approaches and monitoring the effect of already available treatment methods are analyzed. The search for literature sources was conducted in the Scopus, Web of Science, MedLine, The Cochrane Library, EMBASE, Global Health, CyberLeninka, and RSCI databases by the keywords “interstitial lung diseases”, “idiopathic pulmonary fibrosis”, “hypersensitivity pneumonitis”, “familial pulmonary fibrosis”, “genetic”, “epigenetic”, “precision diagnostics”, “therapy” with a search depth of 20 years.
Keywords
About the Authors
E. E. ArkhangelskayaRussian Federation
Elena E. Arkhangelskaya, PhD, Head of the Department, Associate Professor
State Healthcare Institution “Samara City Clinical Hospital No. 8”; Pulmonology Department; Department of Therapy, Gastroenterology and Pulmonology
Saratov
Competing Interests:
The authors declare that this work, its theme, subject and content do not affect competing interests
S. V. Lyamina
Russian Federation
Svetlana V. Lyamina, MD, PhD, Head of the Laboratory, Professor
Research Center for Biomedical Research; Laboratory of Molecular Pathology of Digestion; Department of Propaedeutics of Internal Medicine and Gastroenterology
Saratov
Competing Interests:
The authors declare that this work, its theme, subject and content do not affect competing interests
E. O. Kozhevnikova
Russian Federation
Ekaterina O. Kozhevnikova, PhD, research associate
Research Center for Biomedical Research; Laboratory of Molecular Pathology of Digestion
Saratov
Competing Interests:
The authors declare that this work, its theme, subject and content do not affect competing interests
I. V. Kozlova
Russian Federation
Irina V. Kozlova, MD, PhD, Head of the Department, Professor
Department of Therapy, Gastroenterology, Pulmonology
Saratov
Competing Interests:
The authors declare that this work, its theme, subject and content do not affect competing interests
T. G. Shapovalova
Russian Federation
Tatyana G. Shapovalova, MD, Professor
Department of Therapy, Gastroenterology, Pulmonology
Saratov
Competing Interests:
The authors declare that this work, its theme, subject and content do not affect competing interests
G. L. Yurenev
Russian Federation
Georgy L. Yurenev, MD, Professor
Department of Propaedeutics of Internal Medicine and Gastroenterology
Saratov
Competing Interests:
The authors declare that this work, its theme, subject and content do not affect competing interests
References
1. Data from the genetic registry. [Electronic resource]. URL: https://www.ncbi.nlm.nih.gov/gtr/tests/552741/. (date of the application 11. 09. 2024) [In Russian]
2. Interstitial lung diseases: a practical guide edited by N.A. Mukhin. M.: Litera. 2007; 432 p. [In Russian]
3. Viesel A.A., Gorblyansky Yu.Yu., Ilkovich M.M., et al. Fibrotic sarcoidosis: from understanding to treatment perspective. Practical pulmonology. 2021; 1: 61-73. [in Russian]
4. Biryukova S.S., Vishnevsky A.G., Gimpelson V.E., et al. How to increase human capital and its contribution to economic and social development. Abstracts of reports for the XIX April International Scientific Conference on Problems of Economic and Social Development, ed. Kuzminova Ya.I., Ovcharova L.N., Yakobson L.I. Moscow, Publishing House of the Higher School of Economics. 2018; 38-46. [In Russian]
5. Adegunsoye A., Oldham J.M., Fernandez Perez E.R., et al. Outcomes of immunosuppressive therapy in chronic hypersensitivity pneumonitis. ERJ Open Res. 2017; 3: 00016–2017. doi: 10.1183/23120541.00016-2017.
6. Alder J.K., Stanley S.E., Wagner C.L., et al. Exome sequencing identifies mutant TINF2 in a family with pulmonary fibrosis. Chest. 2015; 147: 1361–8. doi: 10.1378/chest.14-1947.
7. Allen R.J., Porte J., Braybrooke R., et al. Genetic variants associated with susceptibility to idiopathic pulmonary fibrosis in people of European ancestry: a genome-wide association study. Lancet Respir Med. 2017; 5: 869–80. doi: 10.1016/S2213-2600(17)30387-9.
8. Antoine M.H., Mlika M. Interstitial Lung Disease.In: StatPearls. Treasure Island (FL): StatPearls Publishing. 2024. [Electronic resource]. URL: https://www.ncbi.nlm.nih.gov/books/NBK541084/ (date of the application: 02. 05. 2024).
9. Avci E., Sarvari P., Savai R., et al. Epigenetic Mechanisms in Parenchymal Lung Diseases: Bystanders or Therapeutic Targets? Int J Mol Sci. 2022; 23(1): 546. doi: 10.3390/ijms23010546.
10. Raghu G., Remy-Jardin M., Myers J.L., et al. Diagnosis of idiopathic pulmonary fibrosis. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am J Respir Crit Care Med. 2018; 198(5): e44–e68. doi: 10.1164/rccm.201807-1255ST.
11. Bartczak K., Białas A.J.; Kotecki M.J., et al. More than a Genetic Code: Epigenetics of Lung Fibrosis. Mol. Diagn. Ther. 2020; 24: 665–681. doi: 10.1007/s40291-020-00490-7.
12. Chen Y., Huang Z., Bao Y., et al. Increased p300/CBP expression in acute respiratory distress syndrome is associated with interleukin-17 and prognosis. Clin. Respir. J. 2020; 14: 791–799. doi: 10.1111/crj.13197.
13. Cogan J.D., Kropski J.A., Zhao M., et al. Rare variants in RTEL1 are associated with familial interstitial pneumonia. Am J Respir Crit Care Med. 2015; 191: 646–55. doi: 10.1164/rccm.201408-1510OC.
14. Collaborators GBDCRD. Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Respir Med. 2020; 8: 585–96. doi: 10.1016/S2213-2600(20)30105-3].
15. Dai J., Cai H., Li H., et al. Association between telomere length and survival in patients with idiopathic pulmonary fibrosis. Respirology. 2015; 20: 947–52. doi: 10.1111/resp.12566.
16. Dickson R.P., Erb-Downward J.R., Martinez F.J., et al. The microbiome and the respiratory tract. Annu Rev Physiol. 2016; 78: 481–504. doi: 10.1146/annurev-physiol-021115-105238.
17. Ding Q., Luckhardt T., Hecker L., et al. New Insights into the Pathogenesis and Treatment of Idiopathic Pulmonary Fibrosis. Drugs. 2011; 71: 981–1001. doi: 10.2165/11591490-000000000-00000.
18. Falfán-Valencia R., Camarena A., Pineda C.L., et al. Genetic susceptibility to multicase hypersensitivity pneumonitis is associated with the TNF-238 GG genotype of the promoter region and HLADRB1*04 bearing HLA haplotypes. Respir Med. 2014; 108: 211–217. doi: 10.1016/j.rmed.2013.11.004.
19. Fingerlin T.E., Murphy E., Zhang W., et al. Genome-wide association study identifies multiple susceptibility loci for pulmonary fibrosis. Nat Genet, 2013; 45: 613–20. doi: 10.1038/ng.2609.
20. Garbuzenko O.B., Ivanova V., Kholodovych V., et al. Combinatorial treatment of idiopathic pulmonary fibrosis using nanoparticles with prostaglandin E and siRNA(s). Nanomed. Nanotechnol. Biol. Med. 2017; 13: 1983–1992. doi: 10.1016/j.nano.2017.04.005
21. Hannum G., Guinney J., Zhao L., et al. Genome-wide Methylation Profiles Reveal Quantitative Views of Human Aging Rates. Mol. Cell. 2013; 49: 359–367. doi: 10.1016/j.molcel.2012.10 .016.
22. Hao Y., Bates S., Mou H., et al. Genome-Wide Association Study: Functional Variant rs2076295 Regulates Desmoplakin Expression in Airway Epithelial Cells. Am J Respir Crit Care Med. 2020; 202(9): 1225-1236. doi: 10.1164/rccm.201910-1958OC.
23. Herazo-Maya J.D., Sun J., Molyneaux P.L., et al. Validation of a 52-gene risk profile for outcome prediction in patients with idiopathic pulmonary fibrosis: an international, multicentre, cohort study. Lancet Respir Med. 2017; 5: 857–68. doi: 10.1016/S2213-2600(17)30349-1.
24. Hewitt R.J., Molyneaux P.L. The respiratory microbiome in idiopathic pulmonary fibrosis. Ann Transl Med. 2017; 5: 250. doi: 10.21037/atm.2017.01.56.
25. Huang Y., Ma S.F., Espindola M.S., et al. Microbes are associated with host innate immune response in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2017; 196: 208–19. doi: 10.1164/rccm.201607-1525OC.
26. Killian H., Ozaki M., Philippot Q., et al. A roadmap to precision treatments for familial pulmonary fibrosis. eBioMedicine. EBioMedicine. 2024; 104: 105135. doi: 10.1016/j.ebiom.2024.105135.
27. Justet A., Klay D., Porcher R., et al. Safety and efficacy of pirfenidone and nintedanib in patients with idiopathic pulmonary fibrosis and carrying a telomere-related gene mutation. Eur. Respir. J. 2021; 57: 2003198. doi: 10.1183/13993003.03198-2020.
28. Kaminski N. Microarray analysis of idiopathic pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 2003; 29(3): S32–S36.
29. Kannengiesser C., Borie R., Ménard C., et al. Heterozygous RTEL1 mutations are associated with familial pulmonary fibrosis. Eur Respir J. 2015; 46: 474–85. doi: 10.1183/09031936.00040115
30. King Jr T.E., Bradford W.Z., C astro-Bernardini S., et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2014; 370: 2083–92. doi: 10.1056/NEJMoa1402582.
31. Koh H.B., Scruggs A.M., Huang S.K. Transforming growth factor-β1 increases DNA methyltransferase 1 and 3a ex-pression through distinct post-transcriptional mechanisms in lung fibroblasts. J. Biol. Chem. 2 016; 291: 19287–19298.
32. Krishna R. Genetic Testing in Interstitial Lung Disease: Potential Benefits and Unintended Risks. Curr Pulmonol Rep. 2023; 12: 228–238.
33. Kropski J.A., Mitchell D.B., Markin C., et al. A novel dyskerin (DKC1) mutation is associated with familial interstitial pneumon ia. Chest. 2014; 146: e1–7. doi: 10.1378/chest.13-2224.
34. Kwapiszewska G., Gungl A., Wilhelm J., et al. Transcriptome profiling reveals the complexity of pirfenidone effects in idiopathic pulmonary fibrosis. Eur. Respir. J. 2018; 52: 1800564. doi: 10.1183/13993003.00564-2018.
35. Ley B., Newton C.A., Arnould I., et al. The MUC5B promoter polymorphism and telomere length in patients with chronic hypersensitivity pneumonitis: an observational cohort-control study. Lancet Respir Med. 2017; 5: 639–47. doi: 10.1016/S2213-2600(17)30216-3.
36. Martinez F.J., Collard H.R., Pardo A., et al. Idiopathic pulmonary fibrosis. Nat. Rev. Dis. Prim. 2017; 3: 17074. doi: 10.1038/nrdp.2017.74.
37. Mathai S.K., Pedersen B.S., Smith K., et al. Desmoplakin Variants Are Associated with Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med. 2016; 193(10): 1151-60. doi: 10.1164/rccm.201509-1863OC.
38. Michalski J.E., Schwartz D.A. Genetic Risk Factors for Idiopathic Pulmonary Fibrosis: Insights into Immunopathogenesis. J Inflamm Res. 2021; 13: 1305-1318. doi: 10.2147/JIR.S280958.
39. Molyneaux P.L., Maher T.M. Respiratory microbiome in IPF: cause, effect, or bio marker? Lancet Respir Med. 2014; 2: 511-513. doi: 10.1016/S2213-2600(14)70088-8.
40. Molyneaux P.L., Willis-Owen S.A.G, Cox M.J., et al. Host-microbial interactions in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2017; 195: 1640–50. doi: 10.1164/rccm.201607-1408OC.
41. Nakao A., Fujii M., Matsumura R., et al. Transient gene transfer and expression of Smad7 prevents bleomycin-induced lung fibrosis in mice. J. Clin. Investig. 1999; 104: 5–11. doi: 10.1172/JCI6094.
42. Newton C.A., Molyneaux P.L., Oldham J.M. Clinical Genetics in Interstitial Lung Disease.Front. Med. 2018; 5: 116. doi: 10.3389/fmed.2018.00116.
43. Oldham J.M., Ma S.F., Martinez F.J., et al. TOLLIP, MUC5B, and the response to N-acetylcysteine among individuals with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2015; 192: 1475–82. doi: 10.1164/rccm.201505-1010OC.
44. Olson A.L., Gifford A.H., Inase N., et al. The epidemiology of idiopathic pulmonary fibrosis and interstitial lung diseases at risk of a progressive-fibrosing phenotype. Eur. Respir. Rev. 2018; 27(150): 180077. doi: 10.1183/16000617.0077-2018.
45. Olson A.L., Brown K.K., Swi gris J.J. Understanding and optimizing health-related quality of life and physical functional capacity in idiopathic pulmonary fibrosis. Patient Relat Outcome Meas. 2016; 7: 29–35. doi: 10.2147/PROM.S74857.
46. Povedano J.M., Martinez P., Serrano R., et al. Therapeutic effects of telomerase in mice with pulmonary fibrosis induced by damage to the lungs and short telomeres. eLife. 2018; 7: e31299. doi: 10.7554/eLife.31299.
47. Raghu G., Chen S.-Y., Hou Q., et al. Incidence and prevalence of idiopathic pulmonary fibrosis in US adults 18-64 years old. Eur Respir J. 2016; 48: 179–86. doi: 10.1183/13993003.01653-2015.
48. Roy M.G., Livraghi-Butrico A., Fletcher A.A., et al. Muc5b is required for airway defence. Nature. 2014; 505: 412–6. doi: 10.1038/nature12807.
49. Rubio K., Singh I., Dobersch S., Sarvari P., Günther S., Cordero J., Mehta A., Wujak L., Cabrera-Fuentes H., Chao C.-M., et al. Inactivation of nuclear histone deacetylases by EP300 disrupts the MiCEE complex in idiopat hic pulmonary fibrosis. Nat. Commun. 2019; 10: 1–16. doi: 10.1038/s41467-019-10066-7.
50. Ryerson C.J., Vittinghoff E., Ley B., et al. Predicting survival across chronic interstitial lung disease: the ILD-GAP model. Chest.2014; 145: 723–8. doi: 10.1378/chest.13-1474.
51. Sakamoto S., Yazawa T., Baba Y., et al. Keratinocyte Growth Factor Gene Transduction Ameliorates Pulmonary Fibrosis Induced by Bleomycin in Mice. Am. J. Respir. Cell Mol. Biol. 2011; 45: 489–497. doi: 10.1165/rcmb.2010-0092OC.
52. Salisbury M.L., Han M.K., Dickson R.P., Molyneaux PL. Microbiome in interstitial lung disease: from pathogenesis to treatment target. Curr Opin Pulm Med. 2017; 23: 404–10. doi: 10.1097/MCP.0000000000000399.
53. Schwartz D.A. Idiopathic Pulmonary Fibrosis Is a Genetic Disease Involving Mucus and the Peripheral Airways. Ann. Am. Thorac. Soc. 2018; 15(S3): S192–S197. doi: 10.1513/AnnalsATS.201802-144AW.
54. Seibold M.A., Wise A.L., Speer M.C., et al. A common M UC5B promoter polymorphism and pulmonary fibrosis. N Engl J Med. 2011; 364: 1503–12. doi: 10.1056/NEJMoa1013660.
55. Selman M., Pardo A., Barrera L., et al. Gene Expression Profiles Distinguish Idiopathic Pulmonary Fibrosis from Hypersensitivity Pneumonitis. Am. J. Respir. Crit. Care Med. 2006; 173: 188–198. doi: 10.1164/rccm.200504-644OC.
56. Sheu C.-C., Chang W.-A., Tsai M.-J., et al. Gene Expression Changes Associated with Nintedanib Treatment in Idiopathic Pulmonary Fibrosis Fibroblasts: A Next-Generation Sequencing and Bioinformatics Study. J. Clin. Med. 2019; 8: 308. doi: 10.3390/jcm8030308.
57. Steele M.P., Speer M.C., Loyd J.E., et al. The Clinical and Pathologic Features of Familial Interstitial Pneumonia (FIP) Am. J. Respir. Crit. Care Med. 2005; 172: 1146–1152. doi: 10.1164/rccm.200408-1104OC.
58. Stuart B.D., Choi J., Zaidi S., et al. Exome sequencing links mutations in PARN and RTEL1 with familial pulmonary fibrosis and telomere shortening. Nat Genet. 2015; 47: 512–7. doi: 10.1038/ng.3278.
59. Stuart B.D ., Lee J.S., Kozlitina J., et al. Effect of telomere length on survival in patients with idiopathic pulmonary fibrosis: an observational cohort study with independent validation. Lancet Respir Med. 2014; 2: 557–65. doi: 10.1016/S2213-2600(14)70124-9.
60. Taskar V.S., Coultas D.B. Is idiopathic pulmonary fibrosis an environmental disease? Proc. Am. Thorac. Soc. 2006; 3: 293–298. doi: 10.1513/pats.200512-131TK.
61. Thannickal V.J., Henke C.A., Horowitz J.C., et al. Matrix biology of idiopathic pulmonary fibrosis: A workshop report of the national heart, lung, and blood institute. Am. J. Pathol. 2014; 184: 1643–1651. doi: 10.1016/j.ajpath.2014.02.003.
62. Tirelli C., Morandi V., Valentini A., et al. Multidisciplinary Approach in the Early Detection of Undiagnosed Connective Tissue Diseases in Patients With Interstitial Lung Disease: A Retrospective Cohort Study. Front. Med. 2020; 7: 11. doi: 10.3389/fmed.2020.00011.
63. Tirelli C., Pesenti C., Miozzo M., et al. The Genetic and Epigenetic Footprint in Idiopathic Pulmonary Fibrosis and Familial Pulmonary Fibrosis: A State-of-the-Art Review. Diagnostics. 2022; 12: 3107.
64. Watanabe M., Ebina M., Orson F.M., et al. Hepatocyte Growth Factor Gene Transfer to Alveolar Septa for Effective Suppression of Lung Fibrosis. Mol. Ther. 2005; 12: 58–67. doi: 10.1016/j.ymthe.2005.02.019.
65. Yuan J., Li P., Pan H., et al. miR-542-5p Attenuates Fibroblast Activation by Targeting Integrin α6 in Silica-Induced Pulmonary Fibrosis. Int. J. Mol. Sci. 2018; 19: 3717. doi: 10.3390/ijms19123717.
66. Zhang S., Liu H., Liu Y., et al. miR-30a as Potential Therapeutics by Targeting TET1 through Regulation of Drp-1 Promoter Hydroxymethylation in Idiopathic Pulmonary Fibrosis. Int. J. Mol. Sci. 2017; 18: 633. doi: 10.3390/ijms18030633.
67. Zhang Y.S., Tu B., Song K. et al. Epigenetic hallmarks in pulmonary fibrosis: New advances and perspectives. Cell Signal. 2023; 110: 110842. doi: 10.1016/j.cellsig.2023.110842.
Review
For citations:
Arkhangelskaya E.E., Lyamina S.V., Kozhevnikova E.O., Kozlova I.V., Shapovalova T.G., Yurenev G.L. Idiopathic Pulmonary Fibrosis and Hypersensitive Pneumonitis: A Fresh View on The Role of Genetic and Epigenetic Factors in The Development and Course of Diseases. The Russian Archives of Internal Medicine. 2024;14(6):405-418. https://doi.org/10.20514/2226-6704-2024-14-6-405-418. EDN: LYHBFO