Hemochromatosis and Heart Involvement
https://doi.org/10.20514/2226-6704-2024-14-6-442-456
EDN: ERQADO
Abstract
Hemochromatosis is a life-threatening condition if left untreated, that is caused by excess iron in the body. It can be primary (hereditary) hemochromatosis, resulting from genes mutations, and secondary (acquired) as a result of excessive intake of iron from food or drugs, liver diseases or repeated blood transfusions. Deposition of excess iron in parenchymal tissues leads to cellular dysfunction and clinical manifestations of the disease. The liver, pancreas, joints, skin, pituitary gland and heart are most often affected. Cardiac hemochromatosis is an important and potentially preventable cause of heart failure. Initially, diastolic dysfunction and arrhythmias develop, at later stages a picture of dilated cardiomyopathy can appear. Signs of heart damage in hemochromatosis can be detected using complex 2D and Doppler echocardiography, cardiac MRI with T2* relaxation time measurement and other diagnostic methods. Genetic testing is the gold standard for diagnosing hemochromatosis and should be performed after secondary causes of iron overload have been excluded. The basis of therapy is therapeutic phlebotomy and iron chelation. Median survival is less than a year in untreated patients with severe heart failure caused by hemochromatosis. However, with early and aggressive treatment, survival approaches that of patients with heart failure of other etiologies.
Keywords
About the Authors
E. V. ReznikRussian Federation
Elena V. Reznik, MD, Head of the Department, Cardiologist
medical faculty/Institution of Clinical Medicine; Department of Propedeutics of Internal Diseases
Moscow
Competing Interests:
The authors declare no conflict of interests
M.H. E. Laouar
Russian Federation
Laouar Mohamed Houcem Eddine, PhD student
medical faculty; Department of Propaedeutics of Internal Diseases
Moscow
Competing Interests:
The authors declare no conflict of interests
V. Yu. Voinova
Russian Federation
Victoria Y. Voinova, MD, PhD, Head of the Department
Research Clinical Institute of Pediatrics and Pediatric Surgery named after Academician Yu.E. Veltishchev Federal State Autonomous Educational Institution; Department of Clinical Genetics; Faculty of Medical Biology, Federal State Autonomous Educational Institution of Higher Education; Department of General and Medical Genetics
Moscow
Competing Interests:
The authors declare no conflict of interests
G. N. Golukhov
Russian Federation
Georgy N. Golukhov, President of the GBUZ, Deputy Chairman of the Public Council under the Department of Health of the City of Moscow
Moscow
Competing Interests:
The authors declare no conflict of interests
References
1. Barton JC., Parker CJ. HFE-Related Hemochromatosis. 2000 Apr 3 [updated 2024 Apr 11]. In: Adam MP., Feldman J., Mirzaa GM. et al. editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2024. PMID: 20301613.
2. Brissot P., Pietrangelo A., Adams PC. et al. Haemochromatosis. Nat Rev Dis Primers. 2018 Apr 5; 4: 18016. doi: 10.1038/nrdp.2018.16.
3. Malaeva EG., Adamenko EI., Zharskaya OM. Multiple organ lesion in hemochromatosis. Health and Ecology Issues. 2022; 19(1): 139–144. doi: 10.51523/2708-6011.2022-19-1-18 [in Russian].
4. Sandhu K., Flintoff K., Chatfield MD. et al. Phenotypic analysis of hemochromatosis subtypes reveals variations in severity of iron overload and clinical disease. Blood. 2018 Jul 5; 132(1): 101-110. doi: 10.1182/blood-2018-02-830562.
5. Kemppinen L., Mattila M., Ekholm E. et al. Gestational iron deficiency anemia is associated with preterm birth, fetal growth restriction, and postpartum infections. J Perinat Med. 2020 Dec 21; 49(4): 431-438. doi: 10.1515/jpm-2020-0379.
6. Merryweather-Clarke AT., Pointon JJ., Jouanolle AM. et al. Geography of HFE C282Y and H63D mutations. Genet Test. 2000; 4(2): 183-98. doi: 10.1089/10906570050114902.
7. Wallace DF., Subramaniam VN. The global prevalence of HFE and non-HFE hemochromatosis estimated from analysis of next-generation sequencing data. Genet Med. 2016 Jun; 18(6): 618-26. doi: 10.1038/gim.2015.140. Epub 2015 Dec 3.
8. Kang W., Barad A., Clark AG. et al. Ethnic Differences in Iron Status. Adv Nutr. 2021 Oct 1; 12(5): 1838-1853. doi: 10.1093/advances/nmab035.
9. Pilling LC., Tamosauskaite J., Jones G. et al. Common conditions associated with hereditary haemochromatosis genetic variants: cohort study in UK Biobank. BMJ. 2019 Jan 16; 364: k5222. doi: 10.1136/bmj.k5222. Erratum in: BMJ. 2019 Oct 23; 367: l6157.
10. Cheng CF., Lian WS. Prooxidant mechanisms in iron overload cardiomyopathy. Biomed Res Int. 2013; 2013: 740573. doi: 10.1155/2013/740573. Epub 2013 Nov 19.
11. Trousseau A. Glycosurie; diabete sucre. Clinique Med de l’Hotel-dieu de Paris (2<sup>nd</sup> ed) 1865; 2: 663–698. doi: 10.1007/s12072-023-10510-3.
12. Von Recklinghausen FD. Uber haemochromatose. Tageblatt der (62) Versammlung Deutscher Naturforscher und Arzte Heidelberg 1889; 62: 324–325. doi: 10.1007/s12072-023-10510-3.
13. Atkins JL., Pilling LC., Masoli JAH. et al. Association of Hemochromatosis HFE p.C282Y Homozygosity With Hepatic Malignancy. JAMA. 2020 Nov 24; 324(20): 2048-2057. doi: 10.1001/jama.2020.21566.
14. Pilling LC., Tamosauskaite J., Jones G. et al. Common conditions associated with hereditary haemochromatosis genetic variants: cohort study in UK Biobank. BMJ. 2019 Jan 16; 364: k5222. doi: 10.1136/bmj.k5222. Erratum in: BMJ. 2019 Oct 23; 367: l6157.
15. Atkins JL., Pilling LC., Heales CJ. et al. Hemochromatosis mutations, brain iron imaging, and dementia in the UK Biobank Cohort. J Alzheimers Dis. 2021;79:1203–1211. doi: 10.3233/JAD-201080.
16. Tamosauskaite J., Atkins JL., Pilling LC. et al. Hereditary hemochromatosis associations with frailty, sarcopenia and chronic pain: evidence from 200,975 older UK Biobank participants. J Gerontol A Biol Sci Med Sci. 2019; 74: 337–342. doi: 10.1093/gerona/gly270.
17. Powell LW., Seckington RC., Deugnier Y. et al. Haemochromatosis. Lancet. 2016 Aug 13 ;388(10045): 706-16. doi: 10.1016/S0140-6736(15)01315-X. Epub 2016 Mar 12.
18. Doyard M., Chappard D., Leroyer P. et al. Decreased Bone Formation Explains Osteoporosis in a Genetic Mouse Model of Hemochromatosiss. PloS One. 2016; 11: e0148292. doi: 10.1371/journal.pone.0148292.
19. Girelli D., Busti F., Brissot P. et al. Hemochromatosis classification: update and recommendations by the BIOIRON Society. Blood. 2022 May 19; 139(20): 3018-3029. doi: 10.1182/blood.2021011338.
20. Kowdley KV., Brown KE., Ahn J. et al. ACG Clinical Guideline: Hereditary Hemochromatosis. Am J Gastroenterol. 2019 Aug; 114(8): 1202-1218. doi: 10.14309/ajg.0000000000000315.
21. Chin J., Powell L.W. Utility of hepatic or total body iron burden in the assessment of advanced hepatic fibrosis in HFE hemochromatosis. Sci Rep 9, 20234 (2019). doi: 10.1038/s41598-019-56732-0.
22. Bardou-Jacquet E., Morandeau E., Anderson GJ. et al. Regression of Fibrosis Stage With Treatment Reduces Long-Term Risk of Liver Cancer in Patients With Hemochromatosis Caused by Mutation in HFE. Clin Gastroenterol Hepatol. 2020 Jul; 18(8): 1851-1857. doi: 10.1016/j.cgh.2019.10.010.
23. Girelli D., Busti F., Brissot P. et al. Hemochromatosis classification: update and recommendations by the BIOIRON Society. Blood. 2022 May 19; 139(20): 3018-3029. doi: 10.1182/blood.2021011338.
24. Bardou-Jacquet E., Lainé F., Guggenbuhl P. et al. Worse Outcomes of Patients With HFE Hemochromatosis With Persistent Increases in Transferrin Saturation During Maintenance Therapy. Clin Gastroenterol Hepatol. 2017 Oct; 15(10): 1620-1627. doi: 10.1016/j.cgh.2016.12.039.
25. Calori S., Comisi C., Mascio A. et al. Overview of Ankle Arthropathy in Hereditary Hemochromatosis. Med Sci (Basel). 2023 Aug 15; 11(3): 51. doi: 10.3390/medsci11030051.
26. Ravasi G., Pelucchi S., Bertola F. et al. Identification of Novel Mutations by Targeted NGS Panel in Patients with Hyperferritinemia. Genes (Basel). 2021 Nov 9; 12(11): 1778. doi: 10.3390/genes12111778.
27. Sandhu K., Flintoff K., Chatfield MD. et al. Phenotypic analysis of hemochromatosis subtypes reveals variations in severity of iron overload and clinical disease. Blood. 2018 Jul 5; 132(1): 101-110. doi: 10.1182/blood-2018-02-830562.
28. Legros L., Bardou-Jacquet E., Latournerie M. et al. Non-invasive assessment of liver fibrosis in C282Y homozygous HFE hemochromatosis. Liver Int. 2015 Jun; 35(6): 1731-8. doi: 10.1111/liv.12762.
29. Malvarosa I., Massaroni C., Liguori C. et al. Estimation of liver iron concentration by dual energy CT images: influence of X-ray energy on sensitivity. Annu Int Conf IEEE Eng Med Biol Soc. 2014; 2014: 5129-32. doi: 10.1109/EMBC.2014.6944779.
30. Bazzocchi A., Ponti F., Albisinni U. et al. DXA: Technical aspects and application. Eur J Radiol. 2016; 85(8): 1481–1492. doi: 10.1016/j.ejrad.2016.04.004.
31. Yancy CW., Jessup M., Bozkurt B. et al. 2013 ACCF/AHA guidelines for the management of heart failure: executive summary. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Developed in collaboration with the American College of Chest Physicians, Heart Rhythm Society, and International Society for Heart and Lung Transplantation. Endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation. J Am Coll Cardiol. 2013; 62: 1495–539. doi: 10.1161/CIR.0b013e31829e8807.
32. Husar-Memmer E., Stadlmayr A., Datz C. et al. HFE-related hemochromatosis: an update for the rheumatologist. Curr Rheumatol Rep. 2014 Jan; 16(1): 393. doi: 10.1007/s11926-013-0393-4.
33. Rombout-Sestrienkova E., Koek GH., Neslo R. et al. Course of iron parameters in HFE-hemochromatosis patients during initial treatment with erythrocytapheresis compared to phlebotomy. J Clin Apher. 2016 Dec; 31(6): 564-570. doi: 10.1002/jca.21451.
34. West KA., Eder AF. Accepting hereditary hemochromatosis blood donors: ask not why, ask why not. Transfusion 56, 2907–2909 (2016). doi: 10.1038/nrdp.2018.16.
35. Bardou-Jacquet E. Worse outcomes of patients with HFE hemochromatosis with persistent increases in transferrin saturation during maintenance therapy. Clin. Gastroenterol. Hepatol 15, 1620–1627 (2017). doi: 10.1016/j.cgh.2016.12.039.
36. Rombout-Sestrienkova E., De Jonge N., Martinakova K. et al. Endstage cardiomyopathy because of hereditary hemochromatoss successfully treated with erythrocytapheresis in combination with left ventricular assist device support. Circ Heart Fail. 2014; 7: 541–3. doi: 10.1161/CIRCHEARTFAILURE.114.001198.
37. Pennell D., Carpenter J., Roughton M. et al. On improvement in ejection fraction with iron chelation in thalassemia major and the risk of future heart failure. J Cardiovasc Magn Reson 13, 45 (2011). doi: 10.1186/1532-429X-13-45.
38. El Sayed SM., Abou-Taleb A., Mahmoud HS. et al. Percutaneous excretion of iron and ferritin (through Al-hijamah) as a novel treatment for iron overload in beta-thalassemia major, hemochromatosis and sideroblastic anemia. Med Hypotheses. 2014; 83: 238–46. doi: 10.1016/j.mehy.2014.04.001.
39. Gelderman MP., Baek JH., Yalananoglu A. et al. Reversal of hemochromatosis by apotransferrin in non-transfused and transfused Hbbth3/+ (heterozygous B1/B2 globin gene deletion) mice. Haematologica. 2015; 100: 611–22. doi: 10.3324/haematol.2014.117325.
40. Lucijanić M., Pejša V., Mitrović Z. et al. Hemochromatosis gene mutations may affect the survival of patients with myelodysplastic syndrome. Hematology. 2016 Apr; 21(3): 170-4. doi: 10.1080/10245332.2015.1101964.
41. Reznik E.V., Nguyen T.L., Ustyuzhanin D.V. Red flags to diagnose infiltrative cardiomyopathies. Russian Journal of Cardiology. 2023; 28(1S): 5259. doi: 10.15829/1560-4071-2023-5259 [in Russian].
42. Lakhal-Littleton S., Wolna M., Carr CA. et al. Cardiac ferroportin regulates cellular iron homeostasis and is important for cardiac function. Proc Natl Acad Sci USA. 2015; 112: 3164–9. doi: 10.1073/pnas.1422373112.
43. Daniłowicz-Szymanowicz L., Świątczak M., Sikorska K. et al. Pathogenesis, Diagnosis, and Clinical Implications of Hereditary Hemochromatosis-The Cardiological Point of View. Diagnostics. 2021; 16: 1279. doi: 10.3390/diagnostics11071279.
44. Aronow WS. Management of cardiac hemochromatosis. Arch Med Sci. 2018; 14(3): 560–568. doi: 10.5114/aoms.2017.68729.
45. Carpenter JP., Grasso AE., Porter JB. et al. On myocardial siderosis and left ventricular dysfunction in hemochromatosis. J Cardiovasc Magn Reson 2013; 15: 24. doi: 10.1186/1532-429X-15-24.
46. Balkan C., Tuluce SY., Basol G. et al. Relation between NT-proBNP levels, iron overload, and early stage of myocardial dysfunction in beta-thalassemia major patients. Echocardiography. 2012; 29: 318–25. doi: 10.1111/j.1540-8175.2011.01584.x.
47. Kirk P., Roughton M., Porter JB. et al. Cardiac T2* magnetic resonance for prediction of cardiac complications in thalassemia major. Circulation. 2009; 120: 1961–8. doi: 10.1161/CIRCULATIONAHA.109.874487.
48. Yancy CW., Jessup M., Bozkurt B. et al. 2013 ACCF/AHA guidelines for the management of heart failure: executive summary. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Developed in collaboration with the American College of Chest Physicians, Heart Rhythm Society, and International Society for Heart and Lung Transplantation. Endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation. J Am Coll Cardiol. 2013; 62: 1495–539. doi: 10.1161/CIR.0b013e31829e8807.
49. Caines AE., Kpodonu J., Massad MG. et al. Cardiac transplantation in patients with iron overload cardiomyopathy. J Heart Lung Transplant. 2005 Apr; 24(4): 486-8. doi: 10.1016/j.healun.2004.02.009.
50. Jermyn R., Soe E., D’Alessandro D. et al. Cardiac failure after liver transplantation requiring a biventricular assist device. Case Rep Transplant. 2014; 2014: 946961. doi: 10.1155/2014/946961.
51. Kumfu S., Chattipakorn S., Chinda K. et al. T-type calcium channel blockade improves survival and cardiovascular function in thalassemic mice. Eur J Haematol. 2012 Jun; 88(6): 535-48. doi: 10.1111/j.1600-0609.2012.01779.x.
Review
For citations:
Reznik E.V., Laouar M.E., Voinova V.Yu., Golukhov G.N. Hemochromatosis and Heart Involvement. The Russian Archives of Internal Medicine. 2024;14(6):442-456. https://doi.org/10.20514/2226-6704-2024-14-6-442-456. EDN: ERQADO