Effect of Sodium-Glucose Cotransporter Type 2 Inhibitors on The Development and Course of Atrial Fibrillation
https://doi.org/10.20514/2226-6704-2025-15-1-17-23
EDN: MOGTFJ
Abstract
Atrial fibrillation is one of the most common heart rhythm disorders associated with an increased risk of stroke, cardiovascular mortality and hospitalizations. The development of arrhythmias is influenced by a number of risk factors, including arterial hypertension, chronic heart failure, coronary heart disease and endocrine disorders. New guidelines from the European Society of Cardiology (2024) emphasize the importance of managing risk factors to improve treatment efficacy and prognosis in patients with atrial fibrillation. Sodium-glucose cotransporter type 2 inhibitors (gliflozins), originally used as hypoglycemic drugs, are now also widely used to reduce the risk of adverse cardiovascular events. However, the use of these drugs to reduce the risk of atrial fibrillation and improve the course of atrial fibrillation remains an open question. In order to find an answer to this question, a literature review was conducted, which showed that inhibitors of sodium-glucose cotransporter type 2 can theoretically have an antiarrhythmic effect realized through several mechanisms. Analysis of scientific data suggests that in most cases, the use of sodium-glucose cotransporter type 2 inhibitors reduces the risk of first-time atrial fibrillation, has a positive effect on the course of arrhythmia and reduces the risk of its recurrence after ablation. At the same time, it is not clear to the end whether the discussed issues are class-effect or the drugs belonging to the gliflozin group have different efficacy. The mentioned issues necessitate further prospective studies to confirm the antiarrhythmic effect in sodiumglucose cotransporter type 2 inhibitors.
About the Authors
D. A. IshmaevRussian Federation
Daniil A. Ishmaev — 5th year student
Samara
M. S. Vasileva
Russian Federation
Maria S. Vasilyeva — cardiologist
Samara
D. V. Duplyakov
Russian Federation
Dmitry V. Duplyakov — MD, PhD, Professor, Head of the Department of Propaedeutic Therapy with a Course in Cardiology, Samara State Medical University of the Ministry of Health of the Russian Federation; Deputy Chief Physician for Medical Affairs, Samara Regional Clinical Cardiology Dispensary named after V.P. Polyakov
Samara
References
1. Benjamin E.J., Wolf P.A., D’Agostino R.B., et al. Impact of atrial fibrillation on the risk of death: the Framingham Heart Study. Circulation. 1998;98(10):946-952. doi: 10.1161/01.cir.98.10.946.
2. Zoni-Berisso M., Lercari F., Carazza T., et al. Epidemiology of atrial fibrillation: European perspective. Clin Epidemiol. 2014;16(6):213-220. doi: 10.2147/CLEP.S47385.
3. Mareev Yu.V., Polyakov D.S., Vinogradova N.G., et al. Epidemiology of atrial fibrillation in a representative sample of the European part of the Russian Federation. Analysis of EPOCH-CHF study. Kardiologiia. 2022;62(4):12-19. doi: 10.18087/cardio.2022.4.n1997. [In Russian]
4. Katsoularis I., Jerndal H., Kalucza S., et al. Risk of arrhythmias following COVID-19: nationwide self-controlled case series and matched cohort study. Eur Heart J Open. 2023;3(6):oead120. doi: 10.1093/ehjopen/oead120.
5. Go A.S., Hylek E.M., Phillips K.A., et al. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. JAMA. 2001;285(18):2370-2375. doi: 10.1001/jama.285.18.2370.
6. Nieuwlaat R., Capucci A., Camm A.J., et al. European Heart Survey Investigators. Atrial fibrillation management: a prospective survey in ESC member countries: the Euro Heart Survey on Atrial Fibrillation. Eur Heart J. 2005;26(22):2422-2434. doi: 10.1093/eurheartj/ehi505.
7. Nabauer M., Gerth A., Limbourg T., et al. The Registry of the German Competence NETwork on Atrial Fibrillation: patient characteristics and initial management. Europace. 2009;11(4):423-434. doi: 10.1093/europace/eun369.
8. Benjamin E.J., Levy D., Vaziri S.M., et al. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. JAMA. 1994;271(11):840-844. doi: 10.1001/jama.1994.03510350050036.
9. Aune D., Feng T., Schlesinger S., et al. Diabetes mellitus, blood glucose and the risk of atrial fibrillation: A systematic review and meta-analysis of cohort studies. J Diabetes Complications. 2018;32(5):501-511. doi: 10.1016/j.jdiacomp.2018.02.004.
10. Wang A., Green J.B., Halperin J.L., et al. Atrial Fibrillation and Diabetes Mellitus: JACC Review Topic of the Week. J Am Coll Cardiol. 2019;74(8):1107-1115. doi: 10.1016/j.jacc.2019.07.020.
11. Van Gelder I.C., Rienstra M., Bunting K.V., et al. ESC Scientific Document Group. 2024 ESC Guidelines for the management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2024:ehae176. doi: 10.1093/eurheartj/ehae176.
12. Zinman B., Wanner C., Lachin J.M., et al. EMPA-REG OUTCOME Investigators. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015;373(22):2117-2128. doi: 10.1056/NEJMoa1504720.
13. Wiviott S.D., Raz I., Bonaca M.P., et al. DECLARE–TIMI 58 Investigators. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2019;380(4):347-357. doi: 10.1056/NEJMoa1812389.
14. McDonagh T.A., Metra M., Adamo M., et al. ESC Scientific Document Group. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2023;44(37):3627–3639. doi: 10.1093/eurheartj/ehad195.
15. Bae J.H., Park E.G., Kim S., et al. Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Renal Outcomes in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Sci Rep. 2019;9(1): 13009. doi: 10.1038/s41598-019-49525-y.
16. Teo Y.H., Chia A.Z. Q., Teo Y.N., et al. The impact of sodium-glucose cotransporter inhibitors on blood pressure: a meta-analysis and metaregression of 111 randomized-controlled trials. J Hypertens. 2022;40(12):2353-2372. doi: 10.1097/HJH.0000000000003280.
17. Koshizaka M., Ishikawa K., Ishibashi R., et al. Comparing the effects of ipragliflozin versus metformin on visceral fat reduction and metabolic dysfunction in Japanese patients with type 2 diabetes treated with sitagliptin: A prospective, multicentre, open-label, blinded-endpoint, randomized controlled study (PRIME-V study). Diabetes Obes Metab. 2019;21(8):1990-1995. doi: 10.1111/dom.13750.
18. Fralick M., Chen S.K., Patorno E., et al. Assessing the Risk for Gout With Sodium-Glucose Cotransporter-2 Inhibitors in Patients With Type 2 Diabetes: A Population-Based Cohort Study. Ann Intern Med. 2020;172(3):186-194. doi: 10.7326/M19-2610.
19. Peng X., Li L., Zhang M., et al. Sodium-Glucose Cotransporter 2 Inhibitors Potentially Prevent Atrial Fibrillation by Ameliorating Ion Handling and Mitochondrial Dysfunction. Front Physiol. 2020;11:192. doi: 10.3389/fphys.2020.00912.
20. Karmazyn M., Gan X.T., Humphreys R.A., et al. The myocardial Na(+)-H(+) exchange: structure, regulation, and its role in heart disease. Circ Res. 1999;85(9):777-786. doi: 10.1161/01.res.85.9.777.
21. Jayachandran J.V., Zipes D.P., Weksler J., et al. Role of the Na(+)/H(+) exchanger in short-term atrial electrophysiological remodeling. Circulation. 2000;101(15):1861-1866. doi: 10.1161/01.cir.101.15.1861.
22. hui Y., junzhu C., jianhua Z. Gap junction and Na+-H+ exchanger alternations in fibrillating and failing atrium. Int J Cardiol. 2008;128(1):147-149. doi: 10.1016/j.ijcard.2007.06.070.
23. Jalife J., Kaur K. Atrial remodeling, fibrosis, and atrial fibrillation. Trends Cardiovasc Med. 2015;25(6):475-484. doi: 10.1016/j.tcm.2014.12.015.
24. Zelniker T.A., Bonaca M.P., Furtado R.H. M., et al. Effect of Dapagliflozin on Atrial Fibrillation in Patients With Type 2 Diabetes Mellitus: Insights From the DECLARETIMI 58 Trial. Circulation. 2020;141(15):1227-1234. doi: 10.1161/CIRCULATIONAHA.119.044183.
25. Butt J.H., Docherty K.F., Jhund P.S., et al. Dapagliflozin and atrial fibrillation in heart failure with reduced ejection fraction: insights from DAPA-HF. Eur J Heart Fail. 2022;24(3):513-525. doi: 10.1002/ejhf.2381.
26. Böhm M., Slawik J., Brueckmann M., et al. Efficacy of empagliflozin on heart failure and renal outcomes in patients with atrial fibrillation: data from the EMPA-REG OUTCOME trial. Eur J Heart Fail. 2020;22(1):126-135. doi: 10.1002/ejhf.1663.
27. Fernandes G.C., Fernandes A., Cardoso R., et al. Association of SGLT2 inhibitors with arrhythmias and sudden cardiac death in patients with type 2 diabetes or heart failure: A meta-analysis of 34 randomized controlled trials. Heart Rhythm. 2021;18(7):1098- 1105. doi: 10.1016/j.hrthm.2021.03.028.
28. Zhang H.D., Ding L., Mi L.J., et al. SGLT2 inhibitors for the prevention of atrial fibrillation: a systemic review and meta-analysis. Eur J Prev Cardiol. 2024; 31(7):770-779. doi: 10.1093/eurjpc/zwad356.
29. Villaschi A., Cesani N., Chiarito M. SGLT2 inhibitors: a therapy for everybody but not for anything? Eur J Prev Cardiol. 2024;31(7):768- 769. doi: 10.1093/eurjpc/zwad372.
30. Fichadiya A., Quinn A., Au F., et al. Association between sodium– glucose cotransporter-2 inhibitors and arrhythmic outcomes in patients with diabetes and pre-existing atrial fibrillation. Europace. 2024;26(3):euae054. doi: 10.1093/europace/euae054.
31. Jang J., Park S., Kim S., et al. Clinical outcomes with the use of sodium-glucose cotransporter-2 inhibitors in patients with atrial fibrillation and type 2 diabetes mellitus: a multi-centre, real-world cohort study. Eur J Prev Cardiol. 2024;31(3):320-329. doi: 10.1093/eurjpc/zwad322.
32. Abu-Qaoud M.R., Kumar A., Tarun T., et al. Impact of SGLT2 Inhibitors on AF Recurrence After Catheter Ablation in Patients With Type 2 Diabetes. JACC Clin Electrophysiol. 2023;9(10):2109-2118. doi: 10.1016/j.jacep.2023.06.008.
33. Kishima H., Mine T., Fukuhara E., et al. Efficacy of Sodium-Glucose Cotransporter 2 Inhibitors on Outcomes After Catheter Ablation for Atrial Fibrillation. JACC Clin Electrophysiol. 2022;8(11):1393-1404. doi: 10.1016/j.jacep.2022.08.004.
34. Lim J., Kwak S., Choi Y.J., et al. Differing Efficacy of Dapagliflozin Versus Empagliflozin on the Risk of Incident Atrial Fibrillation in Patients With Type 2 Diabetes: A Real-World Observation Using a Nationwide, Population-Based Cohort. J Am Heart Assoc. 2024;13(3):e030552. doi: 10.1161/JAHA.123.030552.
35. Suzuki Y., Kaneko H., Okada A., et al. Comparison of cardiovascular outcomes between SGLT2 inhibitors in diabetes mellitus. Cardiovasc Diabetol. 2022;21(1):67. doi: 10.1186/s12933-022-01508-6.
36. Uthman L., Baartscheer A., Bleijlevens B., et al. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation. Diabetologia. 2018;61(3):722-726. doi: 10.1007/s00125-017-4509-7.
Review
For citations:
Ishmaev D.A., Vasileva M.S., Duplyakov D.V. Effect of Sodium-Glucose Cotransporter Type 2 Inhibitors on The Development and Course of Atrial Fibrillation. The Russian Archives of Internal Medicine. 2025;15(1):17-23. https://doi.org/10.20514/2226-6704-2025-15-1-17-23. EDN: MOGTFJ