Preview

Архивъ внутренней медицины

Расширенный поиск

Болезнь Альцгеймера: влияние микрофлоры кишечника и половых различий на патогенез и стратегии лечения

https://doi.org/10.20514/2226-6704-2025-15-3-165-177

EDN: ACHXWS

Аннотация

Болезнь Альцгеймера (БА) — глобальное заболевание. Наиболее важным в патогенезе БА является увеличение отложений амилоидного белка бета (Aβ) и патологическое скопление тау-белка. В развитии болезни принимае т участие ряд этиологических факторов, таких как возраст, генетика, образ жизни, факторы окружающей среды и микрофлора кишечника (МК). Нарушение регуляции МК — один из факторов патогенеза БА, который способствует нарушению когнитивной функции, включая скопление Aβ и тау-белка, выработку нейромедиаторов и метаболитов, нарушение иммунной регуляции, нейровоспаление, нарушение гематоэнцефалитического барьера, оксидативный стресс и синдром раздраженного кишечника.
Половые различия могут быть важным фактором патогенеза БА. Около 75 % пациентов с БА являются женщинами. Преобладание БА у женщин связано с генетикой, структурой и функцией головного мозга, эстрогеном, образом жизни (например, образование, род деятельности, уровень физической активности и продолжительность сна) и случаями инфекционно-воспалительных заболеваний. Поскольку продолжительность жизни у женщин больше, чем у мужчин, женщины более склонны к БА.
В настоящей статье рассматривается роль МК и половые различия при БА. В начале статьи приводится краткое описание характеристик микрофлоры кишечника и половых различий при БА. В работе рассматриваются перспективные терапевтические стратегии при БА, направленные на МК.

Об авторе

Х. А. Абдель-Сатер
Стоматологический факультет, Университет Мута
Иордания

Халед А. Абдель-Сатер — д.м.н., профессор кафедры медицинской физиологии стоматологических и медицинских наук

Карак 


Конфликт интересов:

Авторы заявляют, что данная работа, её тема, предмет и содержание не затрагивают конкурирующих интересов 



Список литературы

1. Meng X, Su J, Li H, et al. Effectiveness of caregiver non-pharmacological interventions for behavioural and psychological symptoms of dementia: An updated meta-analysis. Ageing Res Rev. 2021 Nov: 71: 101448. doi: 10.1016/j.arr.2021.101448. Epub 2021 Aug 17.

2. Larson EB, Shadlen MF, Wang L, et al. Survival after initial diagnosis of Alzheimer disease. Ann Intern Med. 2004 Apr 6;140(7):501-9. doi: 10.7326/0003-4819-140-7-200404060-00008.

3. Schwab ED, Queiroz R, Fiebrantz AK, et al. Hypothesis on ontogenesis and pathophysiology of Alzheimer’s disease. einstein (São Paulo). 2022 Nov 25:20:eRW0170. doi: 10.31744/einstein_journal/2022RW0170. eCollection 2022.

4. Ashraf G.M., Tarasov V.V., Makhmutova A. et al. The Possibility of an Infectious Etiology of Alzheimer Disease. Mol. Neurobiol. 2019; 56: 4479-4491. DOI: 10.1007/s12035-018-1388-y.

5. Tarawneh R, Holtzman DM. The clinical problem of symptomatic Alzheimer disease and mild cognitive impairment. Cold Spring Harb Perspect Med. 2012 May;2(5):a006148. doi: 10.1101/cshperspect.a006148.

6. Bird TD. Genetic factors in Alzheimer’s disease. N Engl J Med. 2005 Mar 3;352(9):862-4. doi: 10.1056/NEJMp058027.

7. Carabotti M, Scirocco A, Maselli MA, et al. “The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems.” Ann Gastroenterol. 2015 Apr-Jun;28(2):203-209.

8. Tan SH, Karri V, Tay NWR, et al. Emerging pathways to neurodegeneration: dissecting the critical molecular mechanisms in Alzheimer’s disease, Parkinson’s disease. Biomed Pharmacother. 2019 Mar:111:765- 777. doi: 10.1016/j.biopha.2018.12.101. Epub 2019 Jan 3.

9. Kim MS, Kim Y, Choi H, et al. Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer’s disease animal model. Gut. 2020 Feb;69(2):283-294. doi: 10.1136/gutjnl-2018-317431. Epub 2019 Aug 30.

10. Long-Smith C, O’Riordan KJ, Clarke G, et al. Microbiota-GutBrain Axis: New Therapeutic Opportunities. Annu Rev Pharmacol Toxicol. 2020 Jan 6:60:477-502. doi: 10.1146/annurevpharmtox-010919-023628. Epub 2019 Sep 10.

11. Askarova S, Umbayev B, Masoud AR, et al. The Links Between the Gut Microbiome, Aging, Modern Lifestyle and Alzheimer’s Disease. Front Cell Infect Microbiol. 2020;10:104. https://doi.org/10.3389/fcimb.2020.00104

12. Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010 Jul;90(3):859-904. doi: 10.1152/physrev.00045.2009.

13. Chu C, Murdock MH, Jing D, et al. The microbiota regulate neuronal function and fear extinction learning. Nature. 2019 Oct; 574(7779):543-548. doi: 10.1038/s41586-019-1644-y. Epub 2019 Oct 23.

14. Gubert C, Kong G, Renoir T, et al. Exercise, diet and stress as modulators of gut microbiota: Implications for neurodegenerative diseases. Neurobiol Dis. 2020 Feb:134:104621. doi: 10.1016/j.nbd.2019.104621. Epub 2019 Oct 16.

15. Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature. 2012 May 9; 486(7402):222-7. doi: 10.1038/nature11053.

16. Yurkovetskiy L, Burrows M, Khan AA, et al. Gender bias in autoimmunity is influenced by microbiota. Immunity. 2013 Aug 22; 39(2):400-12. doi: 10.1016/j.immuni.2013.08.013.

17. Org E, Mehrabian M, Parks BW, et al. Sex differences and hormonal effects on gut microbiota composition in mice. Gut Microbes. 2016 Jul 3; 7(4):313-322. doi: 10.1080/19490976.2016.1203502. Epub 2016 Jun 29.

18. Sinha T, Vich Vila A, Garmaeva S, et al. Analysis of 1135 gut metagenomes identifies sex-specific resistome profiles. Gut Microbes. 2019;10(3):358-366. doi: 10.1080/19490976.2018.1528822. Epub 2018 Oct 29.

19. Mayneris-Perxachs J, Arnoriaga-Rodríguez M, Luque-Córdoba D, et al. Gut microbiota steroid sexual dimorphism and its impact on gonadal steroids: influences of obesity and menopausal status. Microbiome. 2020 Sep 20;8(1):136. doi: 10.1186/s40168-020-00913-x.

20. Westfall S, Iqbal U, Sebastian M, Pasinetti GM. Gut microbiota mediated allostasis prevents stress-induced neuroinflammatory risk factors of Alzheimer’s disease. Prog Mol Biol Transl Sci. 2019: 168:147-181. doi: 10.1016/bs.pmbts.2019.06.013. Epub 2019 Jul 4.

21. Haghikia A, Jörg S, Duscha A, et al. Dietary Fatty Acids Directly Impact Central Nervous System Autoimmunity via the Small Intestine. Immunity. 2015 Oct 20;43(4):817-29. doi: 10.1016/j.immuni.2015.09.007.

22. Alkasir R, Li J, Li X, et al. Human gut microbiota: the links with dementia development. Protein Cell. 2017 Feb;8(2):90-102. doi: 10.1007/s13238-016-0338-6. Epub 2016 Nov 19.

23. Rowland I, Gibson G, Heinken A, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018 Feb; 57(1):1-24. doi: 10.1007/s00394-017-1445-8. Epub 2017 Apr 9.

24. Chen, Y.; Xu, J.; Chen, Y. Regulation of Neurotransmitters by the Gut Microbiota and Effects on Cognition in Neurological Disorders. Nutrients. 2021 Jun 19;13(6):2099. doi: 10.3390/nu13062099.

25. Singh V, Roth S, Llovera G, et al. Microbiota Dysbiosis Controls the Neuroinflammatory Response after Stroke. Journal of Neuroscience 13 July 2016, 36 (28) 7428-7440; https://doi.org/10.1523/JNEUROSCI.1114-16.2016

26. Hendriksen JV, Nottet HS, Smits HA. Secretases as targets for drug design in Alzheimer’s disease. Eur J Clin Invest. 2002 Jan;32(1):60-8. doi: 10.1046/j.1365-2362.2002.00937.x.

27. Naseri NN, Wang H, Guo J, et al. The complexity of tau in Alzheimer’s disease. Neurosci Lett. 2019 Jul 13:705:183-194. doi: 10.1016/j.neulet.2019.04.022. Epub 2019 Apr 25.

28. Qian XH, Song XX, Liu XL, et al. Inflammatory pathways in Alzheimer’s disease mediated by gut microbiota. Ageing Res Rev. 2021 Jul: 68: 101317. doi: 10.1016/j.arr.2021.101317. Epub 2021 Mar 9.

29. Diaz Heijtz R, Wang S, Anuar F, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):3047-52. doi: 10.1073/pnas.1010529108. Epub 2011 Jan 31.

30. Hrncir T, Hrncirova L, Kverka M, Tlaskalova-Hogenova H. The role of gut microbiota in intestinal and liver diseases. Lab Anim. 2019 Jun;53(3):271-280. doi: 10.1177/0023677218818605. Epub 2018 Dec 22.

31. Wei S., Peng W., Mai Y. et al. Outer membrane vesicles enhance tau phosphorylation and contribute to cognitive impairment. J Cell Physiol. 2020 May;235(5):4843-4855. doi: 10.1002/jcp.29362. Epub 2019 Oct 29.

32. Kocahan S, Doğan Z. Mechanisms of Alzheimer’s disease pathogenesis and prevention: the brain, neural pathology, N-methyl-D-aspartate Receptors, tau protein and other risk factors. Clin Psychopharmacol Neurosci. 2017 Feb 28;15(1):1-8. doi: 10.9758/cpn.2017.15.1.1.

33. Bailey MT, Cryan JF. The microbiome as a key regulator of brain, behavior and immunity: Commentary on the 2017 named series. Brain Behav Immun. 2017 Nov:66:18-22. doi: 10.1016/j.bbi.2017.08.017. Epub 2017 Aug 23.

34. Palm NW, de Zoete MR, Flavell RA. Immune-microbiota interactions in health and disease. Clin Immunol. 2015 Aug;159(2):122-127. doi: 10.1016/j.clim.2015.05.014. Epub 2015 Jun 30.

35. Schlegel P, Novotny M, Klimova B, Valis M. “Muscle-Gut-Brain Axis”: Can Physical Activity Help Patients with Alzheimer’s Disease Due to Microbiome Modulation? J Alzheimers Dis. 2019;71(3):861-878. doi: 10.3233/JAD-190460.

36. Collins SM, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol. 2012 Nov;10(11):735-42. doi: 10.1038/nrmicro2876. Epub 2012 Sep 24.

37. Qu L., Li Y., Liu F., et al. Microbiota-Gut-Brain Axis Dysregulation in Alzheimer’s Disease: Multi-Pathway Effects and Therapeutic Potential. Aging Dis. 2024 May 7;15(3):1108-1131. doi: 10.14336/AD.2023.0823-2.

38. Roy J, Tsui KC, Ng J, et al. Regulation of Melatonin and Neurotransmission in Alzheimer’s Disease. Int J Mol Sci. 2021 Jun 25;22(13):6841. doi: 10.3390/ijms22136841.

39. Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG. Minireview: Gut microbiota: the neglected endocrine organ. Mol Endocrinol. 2014 Aug; 28(8): 1221-38. doi: 10.1210/me.2014-1108. Epub 2014 Jun 3.

40. Inazu M. Functional Expression of Choline Transporters in the BloodBrain Barrier. Nutrients. 2019 Sep 20;11(10):2265. doi: 10.3390/nu11102265.

41. Williams BB, Van Benschoten AH, Cimermancic P, et al. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe. 2014 Oct 8; 16(4):495-503. doi: 10.1016/j.chom.2014.09.001. Epub 2014 Sep 25.

42. Liu C, Goel P, Kaeser PS. Spatial and temporal scales of dopamine transmission. Nat Rev Neurosci. 2021 Jun;22(6):345-358. doi: 10.1038/s41583-021-00455-7. Epub 2021 Apr 9.

43. Zhao Y, Jaber V, Lukiw WJ. Secretory Products of the Human GI Tract Microbiome and Their Potential Impact on Alzheimer’s Disease (AD): Detection of Lipopolysaccharide (LPS) in AD Hippocampus. Front Cell Infect Microbiol. 2017;7:318. https://doi.org/10.3389/fcimb.2017.00318

44. Benakis C, Martin-Gallausiaux C, Trezzi JP, Melton P, Liesz A, Wilmes P. The microbiome-gut-brain axis in acute and chronic brain diseases. Curr Opin Neurobiol. 2020 Apr:61:1-9. doi: 10.1016/j.conb.2019.11.009. Epub 2019 Dec 6.

45. Hsiao EY, McBride SW, Hsien S, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013 Dec 19;155(7):1451-63. doi: 10.1016/j.cell.2013.11.024. Epub 2013 Dec 5.

46. D’Argenio V, Sarnataro D. Microbiome Influence in the Pathogenesis of Prion and Alzheimer’s Diseases. Int J Mol Sci. 2019 Sep 23; 20(19):4704. doi: 10.3390/ijms20194704.

47. Li D, Ke Y, Zhan R, et al. Trimethylamine-N-oxide promotes brain aging and cognitive impairment in mice. Aging Cell. 2018 Aug;17(4):e12768. doi: 10.1111/acel.12768. Epub 2018 May 10.

48. Roberts AB, Gu X, Buffa JA, et al. Development of a gut microbetargeted nonlethal therapeutic to inhibit thrombosis potential. Nat Med. 2018 Sep;24(9):1407-1417. doi: 10.1038/s41591-018-0128-1. Epub 2018 Aug 6.

49. Luca M, Di Mauro M, Di Mauro M, Luca A. Gut Microbiota in Alzheimer’s Disease, Depression, and Type 2 Diabetes Mellitus: The Role of Oxidative Stress. Oxid Med Cell Longev. 2019 Apr 17:2019:4730539. doi: 10.1155/2019/4730539. eCollection 2019.

50. Griffin JW, Bradshaw PC. Amino Acid Catabolism in Alzheimer’s Disease Brain: Friend or Foe? Oxid Med Cell Longev. 2017:2017:5472792. doi: 10.1155/2017/5472792. Epub 2017 Feb 5.

51. Fujii Y, Nguyen TTT, Fujimura Y, et al. Fecal metabolite of a gnotobiotic mouse transplanted with gut microbiota from a patient with Alzheimer’s disease. Biosci Biotechnol Biochem. 2019 Nov;83(11):2144- 2152. doi: 10.1080/09168451.2019.1644149. Epub 2019 Jul 22.

52. van de Rest O, van der Zwaluw NL, de Groot LC. Literature review on the role of dietary protein and amino acids in cognitive functioning and cognitive decline. Amino Acids. 2013 Nov;45(5):1035-45. doi: 10.1007/s00726-013-1583-0. Epub 2013 Aug 29.

53. Polis B, Samson AO. Role of the metabolism of branched-chain amino acids in the development of Alzheimer’s disease and other metabolic disorders. Neural Regen Res. 2020 Aug;15(8):1460-1470. doi: 10.4103/1673-5374.274328.

54. Han GH, Kim SJ, Ko WK, et al. Transplantation of taur oursodeoxycholic acid-inducing M2-phenotype macrophages promotes an anti-neuroinflammatory effect and functional recovery after spinal cord injury in rats. Cell Prolif. 2021 Jun;54(6):e13050. doi: 10.1111/cpr.13050. Epub 2021 May 7.

55. Kiriyama Y, Nochi H. The Biosynthesis, Signaling, and Neurological Functions of Bile Acids. Biomolecules. 2019; 9(6): 232. DOI: 10.3390/biom9060232

56. Erny D, Hrabě de Angelis AL, Jaitin D, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015 Jul;18(7):965-77. doi: 10.1038/nn.4030. Epub 2015 Jun 1.

57. Fox M, Knorr DA, Haptonstall KM. Alzheimer’s disease and symbiotic microbiota: an evolutionary medicine perspective. Ann N Y Acad Sci. 2019 Aug;1449(1):3-24. doi: 10.1111/nyas.14129. Epub 2019 Jun 10.

58. Galland L. The gut microbiome and the brain. J Med Food. 2014 Dec;17(12):1261-72. doi: 10.1089/jmf.2014.7000.

59. Miranda M, Morici JF, Zanoni MB, et al. Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the Pathological Brain. Front Cell Neurosci. 2019; 13: 363. https://doi.org/10.3389/fncel.2019.00363

60. Sochocka M., Donskow-Łysoniewska K., Diniz B.S. et al. The Gut Microbiome Alterations and Inflammation-Driven Pathogenesis of Alzheimer’s Disease-a Critical Review. Mol Neurobiol. 2019 Mar; 56(3):1841-1851. doi: 10.1007/s12035-018-1188-4. Epub 2018 Jun 23.

61. Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci. 2017 Feb;20(2):145-155. doi: 10.1038/nn.4476. Epub 2017 Jan 16.

62. Kowalski K, Mulak A. Brain-Gut-Microbiota Axis in Alzheimer’s Disease. J Neurogastroenterol Motil. 2019 Jan 31;25(1):48-60. doi: 10.5056/jnm18087.

63. Kozik AJ, Nakatsu CH, Chun H, et al. Age, sex, and TNF associated differences in the gut microbiota of mice and their impact on acute TNBS colitis. Exp Mol Pathol. 2017 Dec;103(3):311-319. doi: 10.1016/j.yexmp.2017.11.014. Epub 2017 Nov 22.

64. Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018 Mar;14(3):133-150. doi: 10.1038/nrneurol.2017.188. Epub 2018 Jan 29.

65. Szu JI, Obenaus A. Cerebrovascular phenotypes in mouse models of Alzheimer’s disease. J Cereb Blood Flow Metab. 2021 Aug; 41(8):1821-1841. doi: 10.1177/0271678X21992462. Epub 2021 Feb 8.

66. Braniste V, Al-Asmakh M, Kowal C, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014 Nov 19;6(263):263ra158. doi: 10.1126/scitranslmed.3009759.

67. Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat Rev Drug Discov. 2021 Sep;20(9):689-709. doi: 10.1038/s41573-021-00233-1. Epub 2021 Jun 30.

68. Parker, A.; Fonseca, S.; Carding, S.R. Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes. 2020;11(2):135-157. doi: 10.1080/19490976.2019.1638722. Epub 2019 Aug 1.

69. Beaumont M, Andriamihaja M, Lan A, et al. Detrimental effects for colonocytes of an increased exposure to luminal hydrogen sulfide: The adaptive response. Free Radic Biol Med. 2016 Apr:93:155-64. doi: 10.1016/j.freeradbiomed.2016.01.028. Epub 2016 Feb 2.

70. Ohta, S. Molecular hydrogen as a preventive and therapeutic medical gas: Initiation, development and potential of hydrogen medicine. Pharmacol Ther. 2014 Oct;144(1):1-11. doi: 10.1016/j.pharmthera.2014.04.006. Epub 2014 Apr 24.

71. Marizzoni M, Provasi S, Cattaneo A, et al. Microbiota and neurodegenerative diseases. Curr Opin Neurol. 2017 Dec;30(6):630- 638. doi: 10.1097/WCO.0000000000000496.

72. Choi VM, Herrou J, Hecht AL, et al. Activation of Bacteroides fragilis toxin by a novel bacterial protease contributes to anaerobic sepsis in mice. Nat Med. 2016 May;22(5):563-7. doi: 10.1038/nm.4077. Epub 2016 Apr 18.

73. Stadlbauer V, Engertsberger L, Komarova I, et al. Dysbiosis, gut barrier dysfunction and inflammation in dementia: a pilot study. BMC Geriatr. 2020 Jul 20;20(1):248. doi: 10.1186/s12877-020-01644-2.

74. Rajan KB, Weuve J, Barnes LL, et al. Population estimate of people with clinical Alzheimer’s disease and mild cognitive impairment in the United States (2020-2060). Alzheimers Dement. 2021 Dec; 17(12):1966-1975. doi: 10.1002/alz.12362. Epub 2021 May 27.

75. Barford A, Dorling D, Davey Smith G, Shaw M. Life expectancy: women now on top everywhere. BMJ. 2006 Apr 8;332(7545):808. doi: 10.1136/bmj.332.7545.808.

76. Bertram L, Tanzi RE. Thirty years of Alzheimer’s disease genetics: the implications of systematic meta-analyses. Nat Rev Neurosci. 2008 Oct;9(10):768-78. doi: 10.1038/nrn2494.

77. Corbi G, Conti V, Davinelli S, et al. Dietary phytochemicals in neuroimmunoaging: a new therapeutic possibility for humans? Front Pharmacol. 2016 Oct 13:7:364. doi: 10.3389/fphar.2016.00364. eCollection 2016.

78. Kim J, Basak JM, Holtzman DM. The role of apolipoprotein E in Alzheimer’s disease. Neuron. 2009 Aug 13;63(3):287-303. doi: 10.1016/j.neuron.2009.06.026.

79. Alzheimer’s Association. 2017 Alzheimer’s disease facts and figures. Alzheimers Dement. 2017; 13:325–373. DOI: 10.1016/j.jalz.2017.02.001

80. Glymour MM, Manly JJ. Lifecourse social conditions and racial and ethnic patterns of cognitive aging. Neuropsychol Rev. 2008 Sep; 18(3):223-54. doi: 10.1007/s11065-008-9064-z. Epub 2008 Sep 25.

81. Giedd JN, Raznahan A, Mills KL, Lenroot RK. Review: magnetic resonance imaging of male/female differences in human adolescent brain anatomy. Biol Sex Differ. 2012 Aug 21;3(1):19. doi: 10.1186/2042-6410-3-19.

82. Cosgrove KP, Mazure CM, Staley JK. Evolving knowledge of sex differences in brain structure, function, and chemistry. Biol Psychiatry. 2007 Oct 15; 62(8): 847-55. doi: 10.1016/j.biopsych.2007.03.001. Epub 2007 Jun 4.

83. Greenfield JP, Leung LW, Cai D, et al. Estrogen lowers Alzheimer betaamyloid generation by stimulating trans-Golgi network vesicle biogenesis. J Biol Chem. 2002 Apr 5;277(14):12128-36. doi: 10.1074/jbc.M110009200. Epub 2002 Jan 31.

84. Matyi JM, Rattinger GB, Schwartz S, Buhusi M, Tschanz JT. Lifetime estrogen exposure and cognition in late life: the Cache County Study. Menopause. 2019 Dec;26(12):1366-1374. doi: 10.1097/GME.0000000000001405.

85. Ambrosino I, Vacante M, Politi C, et al. Sexual differences regarding Alzheimer’s disease: a narrative review. Journal of Gerontology and Geriatrics 2020; 68:168-73. DOI: 10.36150/2499-6564-376

86. El-Ganainy SO, Soliman OA, Ghazy AA, et al. Intranasal Oxytocin Attenuates Cognitive Impairment, β-Amyloid Burden and Tau Deposition in Female Rats with Alzheimer’s Disease: Interplay of ERK1/2/ GSK3β/Caspase-3. Neurochem Res. 2022 Aug;47(8):2345-2356. doi: 10.1007/s11064-022-03624-x. Epub 2022 May 20.

87. Mao L, Wang L, Bennett S, Xu J, Zou J. Effects of follicle-stimulating hormone on fat metabolism and cognitive impairment in women during menopause. Front Physiol. 2022 Dec 5: 13: 1043237. doi: 10.3389/fphys.2022.1043237. eCollection 2022.

88. Fleminger S, Oliver DL, Lovestone S, Rabe-Hesketh S, Giora A. Head injury as a risk factor for Alzheimer’s disease: the evidence 10 years on; a partial replication. J Neurol Neurosurg Psychiatry. 2003 Jul; 74(7): 857-62. doi: 10.1136/jnnp.74.7.857.

89. Bazarian JJ, Blyth B, Mookerjee S, He H, McDermott MP. Sex differences in outcome after mild traumatic brain injury. J Neurotrauma. 2010 Mar; 27(3): 527-39. doi: 10.1089/neu.2009.1068.

90. Naderi V, Khaksari M, Abbasi R, Maghool F. Estrogen provides neuroprotection against brain edema and blood brain barrier disruption through both estrogen receptors α and β following traumatic brain injury. Iran J Basic Med Sci. 2015 Feb; 18(2): 138-44.

91. Klein S., Passaretti C., Anker M. et al. The impact of sex, gender and pregnancy on 2009 H1N1 disease. Biol Sex Differ. 2010 Nov 4;1(1):5. doi: 10.1186/2042-6410-1-5.

92. Straub RH, Schradin C. Chronic inflammatory systemic diseases: An evolutionary trade-off between acutely beneficial but chronically harmful programs. Evol Med Public Health. 2016 Jan 27;2016(1):37-51. doi: 10.1093/emph/eow001.

93. Willey JZ, Gardener H, Caunca MR, et al. Leisure-time physical activity associates with cognitive decline: The Northern Manhattan Study. Neurology. 2016 May 17;86(20):1897-903. doi: 10.1212/WNL.0000000000002582. Epub 2016 Mar 23.

94. Mulnard RA, Cotman CW, Kawas C, et al. Estrogen replacement therapy for treatment of mild to moderate Alzheimer disease: a randomized controlled trial. Alzheimer’s Disease Cooperative Study. JAMA. 2000 Feb 23; 283(8): 1007-15. doi: 10.1001/jama.283.8.1007.

95. Karp A, Kåreholt I, Qiu C, Bellander T, Winblad B, Fratiglioni L. Relation of education and occupation-based socioeconomic status to incident Alzheimer’s disease. Am J Epidemiol. 2004 Jan 15; 159(2): 175-83. doi: 10.1093/aje/kwh018.

96. Shokri-Kojori E, Wang GJ, Wiers CE, et al. β-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):4483-4488. doi: 10.1073/pnas.1721694115. Epub 2018 Apr 9.

97. Gale SD, Baxter L, Thompson J. Greater memory impairment in dementing females than males relative to sex-matched healthy controls. J Clin Exp Neuropsychol. 2016;38(5):527-33. doi: 10.1080/13803395.2015.1132298. Epub 2016 Jan 6.

98. Ikeda M, Shigenobu K, Fukuhara R, et al. Delusions of Japanese patients with Alzheimer’s disease. Int J Geriatr Psychiatry. 2003 Jun; 18(6):527-32. doi: 10.1002/gps.864.

99. Irvine K, Laws KR, Gale TM, Kondel TK. Greater cognitive deterioration in women than men with Alzheimer’s disease: a meta-analysis. J Clin Exp Neuropsychol. 2012;34(9):989-98. doi: 10.1080/13803395.2012.712676. Epub 2012 Aug 23.

100. Li R, and van Singh M. S ex differences in cognitive impairment and Alzheimer’s disease. Front Neuroendocrinol. 2014 Aug;35(3):385-403. doi: 10.1016/j.yfrne.2014.01.002. Epub 2014 Jan 13.

101. Schmidt R, Kienbacher E, Benke T, et al. Sex differences in Alzheimer’s disease. Neuropsychiatr. 2008; 22: 1-15.

102. Buckley RF, Mormino EC, Chhatwal J, et al. Associations between baseline amyloid, sex, and APOE on subsequent tau accumulation in cerebrospinal fluid. Neurobiol Aging. 2019 Jun:78:178-185. doi: 10.1016/j.neurobiolaging.2019.02.019. Epub 2019 Mar 7.

103. Bianchetti A, Ferrara N, Padovani A, et al. Timely. Detection of mild cognitive impairment in Italy: an expert opinion. J Alzheimers Dis. 2019; 68(4): 1401-1414. doi: 10.3233/JAD-181253.

104. Garrett SL, Sawyer P, Kennedy RE, et al. Racial and sex differences in associations between activities of daily living and cognition in community-dwelling older adults. J Am Geriatr Soc. 2013 Dec; 61(12): 2174-2180. doi: 10.1111/jgs.12543.

105. Skup M, Zhu H, Wang Y, et al. Sex differences in grey matter atrophy patterns among AD and aMCI patients: results from ADNI. Neuroimage. 2011 Jun 1; 56(3): 890-906. doi: 10.1016/j.neuroimage.2011.02.060. Epub 2011 Feb 26.

106. Williamson J, Yabluchanskiy A, Mukli P, et al. Sex differences in brain functional connectivity of hippocampus in mild cognitive impairment. Front Aging Neurosci. 2022; 14: 959394. https://doi.org/10.3389/fnagi.2022.959394

107. Sofi, F.; Macchi, C.; Abbate, R.; Gensini, G.F.; Casini, A. Mediterranean diet and health. Biofactors. 2013; 39: 335–342. doi: 10.1002/biof.1096

108. Wang M.; Cao, J.; Gong C.; Amakye W.K.; Yao, M.; Ren, J. Exploring the microbiota-Alzheimer’s disease linkage using short-term antibiotic treatment followed by fecal microbiota transplantation. Brain Behav Immun. 2021 Aug: 96: 227-238. doi: 10.1016/j.bbi.2021.06.003. Epub 2021 Jun 7.

109. Prinelli F, Fratiglioni L, Kalpouzos G, et al. Specific nutrient patterns are associated with higher structural brain integrity in dementia-free older adults. Neuroimage. 2019 Oct 1: 199: 281-288. doi: 10.1016/j.neuroimage.2019.05.066. Epub 2019 May 30.

110. Kao YC, Ho PC, Tu YK, Jou IM, Tsai KJ. Lipids and Alzheimer’s Disease. Int J Mol Sci. 2020 Feb 22; 21(4): 1505. doi: 10.3390/ijms21041505.

111. Ghosh TS, Rampelli S, Jeffery IB, et al. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries. Neurosci Lett. 2003 Jun 5; 343(2): 139-43. doi: 10.1016/s0304-3940(03)00303-3.

112. Brown J, Bianco JI, McGrath JJ, et al. 1,25-dihydroxyvitamin D3 induces nerve growth factor, promotes neurite outgrowth and inhibits mitosis in embryonic rat hippocampal neurons. Neurosci Lett. 2003 Jun 5; 343(2): 139-43. doi: 10.1016/s0304-3940(03)00303-3.

113. Szczechowiak K, Diniz BS, Leszek J. Diet and Alzheimer’s dementia — Nutritional approach to modulate inflammation. Pharmacol Biochem Behav. 2019 Sep: 184: 172743. doi: 10.1016/j.pbb.2019.172743. Epub 2019 Jul 26.

114. Blumenthal JA, Smith PJ, Mabe S, et al. Lifestyle and neurocognition in older adults with cognitive impairments: A randomized trial. Neurology. 2019 Jan 15;92(3):e212-e223. doi: 10.1212/WNL.0000000000006784. Epub 2018 Dec 19.

115. Morris MC, Tangney CC, Wang Y, Sacks FM, Bennett DA, Aggarwal NT. MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimers Dement. 2015 Sep;11(9):1007-14. doi: 10.1016/j.jalz.2014.11.009. Epub 2015 Feb 11.

116. Yin JX, Maalouf M, Han P, et al. Ketones block amyloid entry and improve cognition in an Alzheimer’s model. Neurobiol Aging. 20 16 Mar: 39: 25-37. doi: 10.1016/j.neurobiolaging.2015.11.018. Epub 2015 Dec 7.

117. Jang J, Kim SR, Lee JE, et al. Molecular Mechanisms of Neuroprotection by Ketone Bodies and Ketogenic Diet in Cerebral Ischemia and Neurodegenerative Diseases. Int J Mol Sci. 2023;25(1):124. Published 2023 Dec 21. doi: 10.3390/ijms25010124.

118. Carranza-Naval MJ, Vargas-Soria M, Hierro-Bujalance C, et al. Alzheimer’s Disease and Diabetes: Role of Diet, Microbiota and Inflammation in Preclinical Models. Biomolecules. 2021 Feb 10;11(2):262. doi: 10.3390/biom11020262.

119. Kawas MI, Lockhart SN, Kim J, et al. Modified Mediterranean ketogenic diet resolves default mode network connectivity differences between adults with normal and impaired cognition. Alzheimer’s Dement. 2021;17: e056711. https://doi.org/10.1002/alz.056711

120. Park S, Zhang T, Wu X, Yi Qiu J. Ketone production by ketogenic diet and by intermittent fasting has different effects on the gut microbiota and disease progression in an Alzheimer’s disease rat model. J Clin Biochem Nutr. 2020 Sep;67(2):188-198. doi: 10.3164/jcbn.19-87. Epub 2020 Mar 20.

121. Schafer MJ, Alldred MJ, Lee SH, et al. Reduction of β-amyloid and γ-secretase by calorie restriction in female Tg2576 mice. Neurobiol Aging. 2015 Mar; 36(3): 1293-302. doi: 10.1016/j.neurobiolaging.2014.10.043. Epub 2014 Dec 4.

122. Sasmita AO. Modification of the gut microbiome to combat neurodegeneration. Rev Neurosci. 2019 Nov 26; 30(8): 795-805. doi: 10.1515/revneuro-2019-0005.

123. Dodiya HB, Kuntz T, Shaik SM, et al. Sex-specific effects of microbiome perturbations on cerebral Aβ amyloidosis and microglia phenotypes. J Exp Med. 2019 Jul 1; 216(7): 1542-1560. doi: 10.1084/jem.20182386. Epub 2019 May 16.

124. Hefendehl JK, LeDue J, Ko RW, Mahler J, Murphy TH, MacVicar BA. Mapping synaptic glutamate transporter dysfunction in vivo to regions surrounding Aβ plaques by iGluSnFR two-photon imaging. Nat Commun. 2016 Nov 11:7:13441. doi: 10.1038/ncomms13441.

125. Zarrinpar A, Chaix A, Xu ZZ, et al. Antibiotic-induced microbiome depletion alters metabolic homeostasis by affecting gut signaling and colonic metabolism. Nat Commun. 2018 Jul 20;9(1):2872. doi: 10.1038/s41467-018-05336-9.

126. Angelucci F, Cechova K, Amlerova J, Hort J. Antibiotics, gut microbiota, and Alzheimer’s disease. J Neuroinflammation. 2019 May 22; 16(1):108. doi: 10.1186/s12974-019-1494-4.

127. Davani-Davari D, Negahdaripour M, Karimzadeh I, et al. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods. 2019 Mar 9;8(3):92. doi: 10.3390/foods8030092.

128. Xu M, Mo X, Huang H, et al. Yeast β-glucan alleviates cognitive deficit by regulating gut microbiota and metabolites in Aβ1-42- induced AD-like mice. Int J Biol Macromol. 2020 Oct 15:161:258-270. doi: 10.1016/j.ijbiomac.2020.05.180. Epub 2020 Jun 6.

129. Lee YS, Lai DM, Huang HJ, et al. Prebiotic Lactulose Ameliorates the Cognitive Deficit in Alzheimer’s Disease Mouse Model through Macroautophagy and Chaperone-Mediated Autophagy Pathways J Agric Food Chem. 2021 Mar 3;69(8):2422-2437. doi: 10.1021/acs.jafc.0c07327. Epub 2021 Feb 22.

130. Meng G, Meng X, Ma X, et al. Application of Ferulic Acid for Alzheimer’s Disease: Combination of Text Mining and Experimental Validation. Front Neuroinform. 2018 May 29:12:31. doi: 10.3389/fninf.2018.00031. eCollection 2018.

131. Shastri P, McCarville J, Kalmokoff M, Brooks SP, Green- Johnson JM. Sex differences in gut fermentation and immune parameters in rats fed an oligofructose-supplemented diet. Biol Sex Differ. 2015 Aug 6: 6:13. doi: 10.1186/s13293-015-0031-0. eCollection 2015.

132. Barbosa, R.S.D.; Vieira-Coelho, M.A. Probiotics and prebiotics: Focus on psychiatric disorders—A systematic review. Nutr Rev. 2020 Jun 1; 78(6):437-450. doi: 10.1093/nutrit/nuz080.

133. Gibson GR, Hutkins R, Sanders ME, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017 Aug;14(8):491-502. doi: 10.1038/nrgastro.2017.75. Epub 2017 Jun 14.

134. Suez J, Zmora N, Segal E, Elinav E. The pros, cons, and many unknowns of probiotics. Nat Med. 2019 May; 25(5): 716-729. doi: 10.1038/s41591-019-0439-x. Epub 2019 May 6.

135. Abraham D, Feher J, Scuderi GL, et al. Exercise and probiotics attenuate the development of Alzheimer’s disease in transgenic mice: Role of microbiome. Exp Gerontol. 2019 Jan: 115: 122-131. doi: 10.1016/j.exger.2018.12.005. Epub 2018 Dec 6.

136. Arora K, Green M, Prakash S. The Microbiome and Alzheimer’s Disease: Potential and Limitations of Prebiotic, Synbiotic, and Probiotic Formulations. Front Bioeng Biotechnol. 2020; 8: 537847. https://doi.org/10.3389/fbioe.2020.537847

137. Lee JY, Kim N, Nam RH, et al. Probiotics reduce repeated water avoidance stress-induced colonic microinflammation in Wistar rats in a sex-specific manner. PLoS One. 2017; 12(12): e0188992. https://doi.org/10.1371/journal.pone.0188992

138. Ton AMM, Campagnaro BP, Alves GA, et al. Oxidative Stress and Dementia in Alzheimer’s Patients: Effects of Synbiotic Supplementation. Oxid Med Cell Longev. 2020 Jan 13: 2020: 2638703. doi: 10.1155/2020/2638703. eCollection 2020.

139. Allegretti JR, Mullish BH, Kelly C, Fischer M. The evolution of the use of faecal microbiota transplantation and emerging therapeutic indications. Lancet. 2019 Aug 3; 394(10196): 420-431. doi: 10.1016/S0140-6736(19)31266-8.

140. Mullish BH, Quraishi MN, Segal JP, et al. The use of faecal microbiota transplant as treatment for recurrent or refractory Clostridium difficile infection and other potential indications: joint British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS) guidelines. Gut. 2018 Nov; 67(11): 1920-1941. doi: 10.1136/gutjnl-2018-316818. Epub 2018 Aug 28.


Рецензия

Для цитирования:


Абдель-Сатер Х. Болезнь Альцгеймера: влияние микрофлоры кишечника и половых различий на патогенез и стратегии лечения. Архивъ внутренней медицины. 2025;15(3):165-177. https://doi.org/10.20514/2226-6704-2025-15-3-165-177. EDN: ACHXWS

For citation:


Abdel-Sater Kh. Alzheimer’s Disease: The Impact of Gut Microbiota and Sex Differences on Pathogenesis and Treatment Strategies. The Russian Archives of Internal Medicine. 2025;15(3):165-177. https://doi.org/10.20514/2226-6704-2025-15-3-165-177. EDN: ACHXWS

Просмотров: 217


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2226-6704 (Print)
ISSN 2411-6564 (Online)