The Content of Intercellular Adhesion Molecules in Patients With COVID-19-Associated Lung Disease
https://doi.org/10.20514/2226-6704-2025-15-3-187-198
EDN: GEREGM
Abstract
Objective. To evaluate the content of intercellular adhesion molecules: ICAM-1, ICAM-2, ICAM-3, NCAM, VCAM-1, PECAM-1, E-sel, P-sel, EpCAM, L-sel in patients with COVID-19-associated lung damage and to identify the relationship between their concentration and severity the flow of the process. Materials and methods. The study included 200 patients after suffering COVID-19-associated lung damage 1 month after discharge from Chita monostationals. The subjects were divided into groups of 50 people, depending on the degree of lung damage according to the results of computed tomography: Group 1 (CT-1), median age was 51.5 [50.5; 54.8]; Group 2 (CT-2), median age 57.0 [53.1; 57.0]; group 3 (CT-3), median age 52.5 [51.9; 55.0]; 4th group (CT-4), median 55.0 [53.2; 56.4]. The control group included 56 relatively healthy individuals who had not previously had coronavirus infection and other acute respiratory diseases in the last 3 months, the median age was 55.0 [51.1; 55.0]. All the study groups were comparable in gender and age. The content of intercellular adhesion molecules in blood serum was determined by immunochemical analysis. Results. The study revealed an increased content of intercellular adhesion molecules (MMA) (ICAM-1, ICAM-2, ICAM-3, NCAM, VCAM-1, PECAM-1, E-sel, P-sel, EpCAM, L-sel) in the studied groups of patients with COVID-19-associated lung damage in comparison with the control group. Differences were found between groups of patients with different levels of lung damage according to CT data, when examining some intercellular adhesion molecules. Conclusion. According to the results of the work carried out, it was revealed that after a coronavirus infection complicated by lung damage, an increase in the concentration of intercellular adhesion molecules in the blood is observed — representatives of all the studied superfamilies. An increase in the levels of intercellular adhesion molecules in the studied patients reflects the presence of endotheliosis and correlates with the severity of lung tissue damage, including during the period of convalescence.
Keywords
About the Authors
A. M. KarachenovaRussian Federation
Karachenova Anastasia Mikhailovna — assistant of the Department of Polyclinic Therapy with a course of medical rehabilitation
Chita
Competing Interests:
The authors declare no conflict of interests
E. N. Romanova
Russian Federation
Romanova Elena Nikolaevna — doctor of Medical Sciences, associate Professor, Head of the Department of Polyclinic Therapy with a course of Medical Rehabilitation
Chita
Competing Interests:
The authors declare no conflict of interests
References
1. Moskalets O.V. Molecules of cellular adhesion icam-1 and vcam- 1 in infectious pathology. Pacific Medical Journal. 2018; 2:21-25. doi: 10.17238/PmJ1609-1175.2018.2.21–25. [In Russian].
2. Nat Pernick. CD Markers. 2014 [Electronic resource]. URL: https://www.pathologyoutlines.com/stains.html. (date of the application: 15.10.2024).
3. Sands B.E. Inflammatory bowel disease: past, present, and future. J Gastroenterol. 2007;42(1):16-25. doi: 10.1007/s00535-006-1995-7.
4. Petrishchev N.N., Vasina L.V. Disorders of adhesive activity as a form of endothelial dysfunction. Translational Medicine. 2014; (3):5-15. doi. org/10.18705/2311-4495-2014-0-3-5-15. [In Russian].
5. National Library of Medicine. 2020. [Electronic resource]. URL: https://medlineplus.gov/genetics/gene/epcam/. (date of the application: 15.10.2024).
6. Mudrov V.A. A. Algorithms for statistical analysis of biomedical research data using the SPSS software package (in accessible language). M, Logosphere. 2022; 143 p. [In Russian].
7. Mudrov V.A. Statistical analysis algorithms of quantitative features in biomedical researchusing the spss software package. Transbaikalian medical bulletin. 2020. [Electronic resource]. URL: https://www.elibrary.ru/download/elibrary_42736765_39471871. (date of the application: 15.10.2024).
8. Petruzziello-Pellegrini T.N., Moslemi-Naeni M., Marsden P.A. New insights into Shiga toxin-mediated endothelial dysfunction in hemolytic uremic syndrome. Virulence. 2013; 4(6):556–563. doi: 10.4161/viru.26143.
9. Schmidt E.P., Kuiebler W.M., Lee W.L. et al. Adhesion molecules: Master controllers of the circulatory system. Compr. Physiol. 2016; 6(2):945–973. doi: 10.1002/cphy.c150020.
10. Chernij V.I. Immune disorders in critical conditions: diagnostic features. The newspaper “News of medicine and pharmacy”. 2008; 13-14:249-250. [In Russian].
11. Novikov V.V., Karaulov A.V. «Storm» of soluble differentiation molecules in COVID-19. Immunologiya. 2022; 43(4):458–467. doi: https://doi.org/10.33029/0206-4952-2022-43-4-458-467. [In Russian].
12. Romanova E.N. Pneumonia in patients with influenza A/H1N1/09: clinical and pathogenetic patterns and outcomes [dissertation, Doctor of Medical Sciences]. Сhita State Medical Academy of the Ministry of Health of the Russian Federation. 2014. [In Russian].
13. Pavlenko V.V., Amirkhanova L.Z., Kataganova G.A. et al. Soluble adhesion molecules (icam-1, icam-2 and l-selectin) at ulcerative colitis. 2012. [Electronic resource]. URL: https://cyberleninka.ru/article/n/rastvorimye-molekuly-adgezii-icam-1-icam-2-i-l-selektin-pri-yazvennom-kolite. (date of the application: 15.10.2024). [In Russian].
14. Lyck R, Enzmann G. The physiological roles of ICAM-1 and ICAM-2 in neutrophil migration into tissues. Curr Opin Hematol. 2015; 22(1):53-9. doi: 10.1097/MOH.0000000000000103.
15. Sokolovskaya A, Korneeva E, Zaichenko D et al. Changes in the Surface Expression of Intercellular Adhesion Molecule 3, the Induction of Apoptosis, and the Inhibition of Cell-Cycle Progression of Human MultidrugResistant Jurkat/A4 Cells Exposed to a Random Positioning Machine. Int J Mol Sci. 2020; 28:21(3):855. doi: 10.3390/ijms21030855.
16. Petruzziello-Pellegrini T.N., Moslemi-Naeni M., Marsden P.A. New insights into Shiga toxin-mediated endothelial dysfunction in hemolytic uremic syndrome. Virulence. 2013; 4(6):556–563. doi: 10.4161/viru.26143.
17. Van Acker HH, Capsomidis A, Smits EL et al. CD56 in the Immune System: More Than a Marker for Cytotoxicity? Front Immunol. 2017; 24(8):892. doi: 10.3389/fimmu.2017.00892.
18. Kong D.H., Kim Y.K., Kim M.R. et al. Emerging Roles of Vascular Cell Adhesion Molecule-1 (VCAM-1) in Immunological Disorders and Cancer. Int J Mol Sci. 2018; 2:19(4):1057. doi: 10.3390/ijms19041057.
19. Jones SC, Banks RE, Haidar A et al. Adhesion molecules in inflammatory bowel disease. Gut. 1995; 36(5):724-730. doi: 10.1136/gut.36.5.724.
20. Villar J., Muros M., Cabrera-Benítez N.E. et al. Soluble platelet-endothelial cell adhesion molecule-1, a biomarker of ventilator-induced lung injury. Crit Care. 2014; 3:18(2). doi: 10.1186/cc13754.
21. Schmidt E.P., Kuiebler W.M., Lee W.L. et al. Adhesion molecules: Master controllers of the circulatory system. Compr. Physiol. 2016; 6(2):945–973. doi: 10.1002/cphy.c150020.
22. Kalinin R.E., Korotkova N.V., Suchkov I.A. et al. Selectins and their involvement in the pathogenesis of cardiovascular diseases. Kazan Medical Journal. 2022; 103(4):617–627. doi: 10.17816/KMJ2022-617. [In Russian].
23. Wayne Smith C. Adhesion molecules and receptors. J Allergy Clin Immunol. 2008; 121(2): 375–379. doi: 10.1016/j.jaci.2007.07.030.
24. Zhito A.V., Iusupova A.O., Privalova E.V. et al. Markers of Endothelial Dysfunction: E-selectin, Endothelin-1 and von Willebrand Factor in Patients with Coronary Heart Disease, Including in Combination with Type 2 Diabetes Mellitus. Rational Pharmacotherapy in Cardiology 2019; 15(6):892-899. doi: 10.20996/1819-6446-2019-15-6-892-899. [In Russian].
25. Murohara T., Buerke M., Lefer A. Polymorphonuclear leucocyte-induced vasoconstriction and endothelial dysfunction. Role of selectins. Arterioscler Thromb. 1994; 14:1509-19. doi: 10.1161/01.atv.14.9.1509.
26. De Mayer G., Herman A. Vascular endothelial dysfunction. Prog Cardiovasc Dis. 1997; 49:325-342. doi: 10.1016/s0033-0620(97)80031-x.
27. Goshchynsky V, Migenko B, Riabokon S. Pathophysiological and pathomorphological aspects of relapse of varicose veins after endovascular laser vein coagulation. Wiad Lek. 2020;7 3(11):2468–2475. doi: 10.36740/WLek202011124.
28. Calder P.C., Ahluwalia N., Albers R., et al. A consideration of biomarkers to be used for evaluation of inflammation in human nutritional studies. Br J Nutr. 2013; 109(Suppl 1): S1e34. doi: 10.1017/S0007114512005119.
29. Blankenberg S., Barbaux S., Tiret L. Adhesion molecules and atherosclerosis. Atherosclerosis. 2003; 170:191-203. doi: 10.1016/s0021-9150(03)00097-2.
30. Huang RB, Eniola-Adefeso O. Shear stress modulation of IL-1β- induced E-selectin expression in human endothelial cells. PLoS One. 2012; 7(2):31874. doi: 10.1371/journal.pone.0031874.
31. Nishiwaki Y, Yoshida M, Iwaguro H. et al. Endothelial E-selectin potentiates neovascularization via endothelial progenitor cell-dependent and -independent mechanisms. Arterioscler Thromb Vasc Biol. 2007; 27(3):512–518. doi: 10.1161/01.ATV.0000254812.23238.2b.
32. Jutila MA, Watts G, Walcheck B et al. Characterization of a functionally important and evolutionarily well-conserved epitope mapped to the short consensus repeats of E-selectin and L-selectin. J Exp Med. 1992; 175(6):1565–1573. doi: 10.1084/jem.175.6.1565.
33. Kansas GS. Selectins and their ligands: current concepts and controversies. Blood. 1996; 88(9):3259–3287. doi: 10.1182/blood.V88.9.3259.bloodjournal8893259.
34. Hossain M, Qadri SM, Liu L. Inhibition of nitric оxide synthesis enhances leukocyte rolling and adhesion in human microvasculature. J Inflamm (Lond). 2012; 9:28. doi: 10.1186/1476-9255-9-28.
35. Chaitanya GV, Cromer W, Wells S. et al. Metabolic modulation of cytokine-induced brain endothelial adhesion molecule expression. Microcirculation. 2012; 19(2):155–165. doi: 10.1111/j.1549-8719.2011.00141.x.
36. Collins R.G., Velji R., Guevara N.V. et al. P-selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice. J Exp Med. 2000; 191(1):189–194. doi: 10.1084/jem.191.1.189.
37. Siddiqui K, George TP, Mujammami M, et al. The association of cell adhesion molecules and selectins (VCAM-1, ICAM-1, E-selectin, L-selectin, and P-selectin) with microvascular complications in patients with type 2 diabetes: A follow-up study. Front Endocrinol (Lausanne). 2023. doi: 10.3389/fendo.2023.1072288.
38. Jutila MA, Watts G, Walcheck B, et a l. Characterization of a functionally important and evolutionarily well-conserved epitope mapped to the short consensus repeats of E-selectin and L-selectin. J Exp Med. 1992; 175(6):1565–1573. doi: 10.1084/jem.175.6.1565.
39. Belockij S.M., Avtalion R.R. Inflammation. Cell mobilization and clinical effects. M, BINOMIAL. 2008; 240 p. [In Russian].
40. Potyakina K.E. The EPCAM gene. The GENOCARD is a genetic encyclopedia. 2020. [Electronic resource]. URL: https://www.genokarta.ru/gene/EPCAM. (date of the application: 24.10.2024). [In Russian].
41. Smith-Norowitz T.A., Loeffl er J., Norowitz Y.M. et al. Intracellular adhesion molecule-1 (ICAM-1) levels in convalescent COVID-19 serum: a case report. Ann. Clin. Lab. Sci. 2021 [Electronic resource]. URL: https://pubmed.ncbi.nlm.nih.gov/34686518/. (date of the application: 24.10.2024).
42. Tong M., Jiang Y., Xia D. et al. Elevated expression of serum endothelial cell adhesion molecules in COVID-19 patients. J. Infect. Dis. 2020; 222:894–8. doi: https://doi.org/10.1093/infdis/jiaa349.
43. Kaur S., Hussain S., Kolhe K. et al. Elevated plasma ICAM1 levels predict 28-day mortality in cirrhotic patients with COVID-19 or bacterial sepsis. JHEP Rep. 2021; 3(4):100303. doi: https://doi.org/10.1016/j.jhepr.2021.
Review
For citations:
Karachenova A.M., Romanova E.N. The Content of Intercellular Adhesion Molecules in Patients With COVID-19-Associated Lung Disease. The Russian Archives of Internal Medicine. 2025;15(3):187-198. https://doi.org/10.20514/2226-6704-2025-15-3-187-198. EDN: GEREGM