IMMUNOPATHOGENESIS OF MYASTHENIA GRAVIS (REVIEW)
https://doi.org/10.20514/2226-6704-2018-8-3-176-185
Abstract
Myasthenia gravis is a progressive autoimmune disease, which characterized by the production of antibodies to the structures of the neuromuscular junction. High clinical heterogeneity of autoimmune myasthenia, initiating the flow, increases the urgency of studying its pathogenesis, searching for specific methods of marker diagnostics, developing algorithms for predicting the features of the development of the disease. At the present time, there are different approaches to the study of the etiology and pathogenesis of the disease, which include both serological, biochemical, genetic, etc. theory of the development of the disease. For decades, research has been carried out to find new pathogenetic links in myasthenia gravis. Today was described a number of antibodies such as for muscarin (MuSK), ryanodine receptors, to titin, lipoprotein bound receptor 4, cortactin, etc.). The serological diagnosis of myasthenia gravis has been used as a «gold standard» in clinical practice. The prognostic criteria describing the course of myasthenia gravis and the type of antibodies isolated in the blood serum of the patient. Also, already have been developed mechanisms of failure of autotolerance, triggering the production of antibodies to their own structures, and their genetic bases are also described. Thanks to the development of biotechnological methods, the researchers were able to identify the subtype of lymphocytes involved in the development of myasthenia gravis. Isolation of individual subpopulations of lymphocytes also became available. Researchers continue to search for new targets, allowing to improve diagnostics, to develop new directions in the therapy of the disease. However, despite the active study of various mechanisms for the development of myasthenia gravis, many unresolved problems still remain. The article describes briefly the main mechanisms studied in the development of myasthenia gravis, which in turn facilitates understanding of complex mechanisms of pathogenesis.
About the Author
E. D. GasymlyRussian Federation
Department of Nervous Diseases with a medical rehabilitation course
References
1. Dedaev S.I .Antibodies to autoantigen targets in myasthenia gravis and their importance for the clinical practice. Neuromuscular diseases. 2014; 2: 6-15 [In Russian]. doi: 10.17650 / 2222-8721-2014-0-2
2. Romanova T.V. Ways of optimizing diagnostic and therapeutic care for patients with myasthenia gravis (an analysis of the experience of the work of the myasthenic center). Practical medicine. 2012; 2 (57): 153-7 [In Russian].
3. Smolin A.I. The modern aspects of the clinic and diagnosis of myasthenia gravis. Siberian Medical Journal. 2013; 3: 12-14 [In Russian].
4. Anaya J.M. Common mechanisms — of autoimmune diseases (the auto immune tautology). Autoimmun. Rev. 2012; 11: 781–4.
5. Aricha R., Mizrachi K., Fuchs S., Souroujon M.C. Blocking of IL-6 suppresses experimental autoimmune myasthenia gravis. J Autoimmun 2011; 36:135–41.
6. Arimura Y. and Yagi J. Comprehensive expression profiles of genes for protein tyrosine phosphatases in immune cells. Sci. Signal. 2010; 3(137): 1
7. Bacher P., Schink C., Teutschbein J. et al. Antigen-Reactive T Cell Enrichment for Direct, High-Resolution Analysis of the Human Naive and Memory Th Cell Repertoire. J Immunol 2013; 190 (8): 3967-76; doi:10.4049/jimmunol.1202221
8. Berrih-Aknin S., Frenkian-Cuvelier M., Eymard B. Diagnostic and clinical classification of autoimmune myasthenia gravis. J. Autoim-mun.2014; 4(8–49): 143–8. doi:10.1016/j.jaut.2014.01.003
9. Berrih-Aknin S., Le Panse R. Myasthenia gravis: a comprehensive review of immune dysregulation and etiological mechanisms. J. Auto-immun. 2014; 52:90-100. doi: 10.1016/j.jaut.2013.12.011.
10. Berrih-Aknin S., Ragheb S., Panse R.L. et al. Ectopic germinal centers, BAFF and anti-B-cell therapy in myasthenia gravis. Autoimmun Rev. 2013; 12(9): 885-93. doi:10.1016/j.autrev.2013.03.01
11. Berrih-Aknin S. Myasthenia gravis: paradox versus paradigm in autoimmunity. J. Autoimmun. 2014; 52: 1– 28.
12. Berrih-Aknin S. Cortactin: A new target in autoimmune myositis and Myasthenia Gravis. Autoimmun Rev. 2014; 13(10): 1001-2. doi:10.1016/j.autrev.2014.08.037
13. Borroto A., Reyes-Garau D., Jiménez M.A. et al. First-in-class inhibitor of the T cell receptor for the treatment of autoimmune diseases. Sci. Transl. Med. 2016; 8(370):.1-16. doi: 10.1126/scitranslmed.aaf2140
14. Bottini N., Peterso E.J. Тyrosine Phosphatase PTPN22: Multifunctional Regulator of Immune Signaling, Development, and Disease. Annu. Rev. Immunol. 2014; 32: 83–119. doi 10.1146/annurevimmunol-032713-120249
15. Cao Y.., Amezquita R.A., Kleinstein S.H. et al. Autoreactive T Cells from Patients with Myasthenia Gravis Are Characterized by Elevated IL-17, IFN-γ, and GM-CSF and Diminished IL-10 Production. J. Immunol. 2016; 196(5): 2075-84. doi: 10.4049/jimmunol.1501339
16. Carr A.S., Cardwell C.R., McCarron P.O., McConville J. A systematic review of population based epidemiological studies in Myasthenia Gravis. BMC Neurol 2010; 10: 46.
17. Cavalcante P., Barzago C., Baggi F., Toll-like receptors 7 and 9 in myasthenia gravis thymus: amplifiers of autoimmunity? et al. Ann. N.Y. Acad. Sci. 2018; 1413(1):11-24. doi: 10.1111/nyas.13534 .
18. Cavalcante P., Bernasconi P., Mantegazza R. Autoimmune mechanisms in myasthenia gravis. Curr. Opin. Neurol. 2012; 25(5): 621–629.
19. Cavalcante P., Cufi P., Mantegazza R. et al. Etiology of myasthenia gra-vis: Innate immunity signature in pathological thymus. J. Autoimmun. Rev. 2013; 12: 863–74. doi:10.1016/j.autrev.2013.03.010 .
20. Chuang W.Y., Ströbel P., Belharazem D. et al. The PTPN22 gain-of-function 1858T(+) genotypes correlate with low IL-2 expression in thymomas and predispose to myasthenia gravis. Genes and Immunity. 2009;10(8): 667–72.
21. Collongues N., Casez O., Lacour A. et a l. Rituximab in refractory and non-refractory myasthenia: a retrospective multicenter study. Muscle Nerve Nov 2012; 46(5): 687–91.
22. Cordiglieri C., Marolda R., Franzi S. et al. Innate immunity in myasthenia gravis thymus: pathogenic effects of Toll-like receptor 4 signaling on autoimmunity. J. Autoimmun. 2014; 52: 74-89. doi: 10.1016/j.jaut.2013.12.013.
23. Dalakas M.C. B cells as therapeutic targets in autoimmune neurological disorders. Nat. Clin. Pract. Neurol. 2008; 4(10): 557–67.
24. Dalakas M.C. Biologics and other novel approaches and new therapeutic options in myasthenia gravis: a view to the future. Ann. N.Y. Acad.. Sci 2012; 1274: 168.
25. Dalakas M.C. Novel future therapeutic options in Myasthenia Gravis. Autoimmun. Rev. 2013; 12(9): 936-41. doi:10.1016/j.aut-rev.2013.03.006
26. Danikowski K.M., Jayaraman S.. Prabhakar Danikowski BC. et al. Regulatory T cells in multiple sclerosis and myasthenia gravis. Journal of Neuroinflammation. 2017; 14(117): 1-16. doi:10.1186/s12974-017-0892-8
27. Evoli A., Padua L. Diagnosis and therapy of myasthenia gravis with anti bodies to muscle-specific kinase. Autoimmun. Rev 2013; 12: 931–5.
28. Gallardo E., Martínez-Hernández E., Titulaer M.J. et al. Cortactin autoantibodies in myasthenia gravis. Autoimmun. Rev. 2014; 13(10): 1003-7. doi: 10.1016/j.autrev.2014.08.03
29. Garth L., Svensson L., Sanchez-Blanco C. et al. Why is PTPN22 a good candidate susce ptibility gene for autoimmune disease? Cope FEBS Letters. 2011; 585: 3689–98. doi:10.1016/j.febslet.2011.04.032
30. Gasperi C.., Melms A, Schoser B. et al. Anti-agrin autoantibodies in myasthenia gravis. Neurology. 2014; 82(22): 1976-83. doi: 10.1212/WNL.0000000000000478.
31. Ge Y., Onengut-Gumuscu S., Quinlan A.R. et al. Targeted Deep Sequencing in Multiple-Affected Sibships of European Ancestry Identifies Rare Deleterious Variants in PTPN22 That Confer Risk for Type 1. J. Diabetes. 2016; 65(3): 794–802. doi: 10.2337/db15-0322
32. Geiger R.., Duhen T, Lanzavecchia A., Sallusto F. Human naive and memory CD4+ T cell repertoires specific for naturally processed antigens analyzed using libraries of amplified T cells. J. Exp. Med. 2009; 206: 1525–34. doi: 10.1084/jem.20090504
33. Gertel-Lapter S., Mizrachi K., Berrih-Aknin S. et al. Impairment of regulatory T cells in myasthenia gravis: Studies in an experimental model. Autoimmun. Rev. 2013; 12: 894–903.
34. Gilhus N.E., Skeie G.O., Romi F., Lazaridis K., Zisimopoulou P., Tzartos S. Myasthenia gravis—autoantibody characteristics and their implications for therapy. Nat. Rev. Neurol. 2016; 12: 259–68. doi:10.1038/nrneurol.2016.44
35. Giraud M., Vandiedonck C., Garchon H.J. Genetic factors in autoimmune myasthenia gravis. Ann. N.Y. Acad. Sci. 2008; 1132: 180–192.
36. Gravina G., Wasén C., Garcia-Bonete M.J. et al. Survivin in autoimmune disease. Autoimmun. Rev. 2013; 16(8): 845-55. doi:10.1016/j.autrev.2017.05.016
37. Greve B., Hoffmann P., Illes Z. et al. The autoimmunity-related polymorphism PTPN22 1858C/T is associated with Cortactin: A new target in autoimmune myositis and Myasthenia Gravis anti-titin antibody-positive myasthenia gravis. Human Immunology. 2009; 70(7): 540–2.
38. Guy C.S., Vignali K.M., Temirov J. et al. Distinct TCR signaling pathways drive proliferation and cytokine production in T cells. Nat. Immunol. 2013; 14(3): 262-70. doi: 10.1038/ni.2538.
39. Hamza T.H., Zabetian C.P., Tenesa A. et al. Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson’s disease. Nat. Genet. 2010; 42(9): 781–5.
40. Hemdan N.Y., Birkenmeier G.., Wichmann G, Abu El-Saad A.M.., Krieger T, Conrad K. et al. Interleukin-17-producing T helper cells in autoimmunity. Autoimmun. Rev. 2010; 9: 785–92.
41. Hong Y., Li H.-F., Skeie G.O. et al. Autoantibody profile and clinical characteristics in a cohort of Chinese adult myasthenia gravis patients. J. Neuroimmunol. 2016; 298: 51–7.
42. Hong Y., Skeie G.O., Zisimopoulou P. et al. Juvenile-onset my-asthenia gravis: autoantibody status, clinical characteristics and genetic polymorphisms. Journal of Neurology. 2017; 264(5): 955–62. doi: 10.1007/s00415-017-8478-z
43. Howard J.F., Utsugisawa K., Benatar M. et al. Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalised myasthenia gravis (REGAIN): a phase 3, randomised, double-blind, placebo-controlled, multicentre study. Lancet Neurol. 2017. Dec; 16(12): 976-986. doi: 10.1016/S1474-4422(17)30369-1. Epub 2017 Oct 20.
44. Huijbers M.G., Lipka A.F., Plomp J.J. et al. Pathogenic immune mechanisms at the neuromuscular synapse: the role of specific antibody-binding epitopes in myasthenia gravis. J. Int. Med.2014; 275: 12–26. doi: 10.1111/joim.12163
45. Hurst J., Landenberg P. Toll-like receptors and autoimmunity. Autoim-mun. Rev. 2008; 7: 204–8.
46. Hwang S., Song K.D., Lesourne R. et al. Reduced TCR signaling potential impairs negative selection but does not result in autoimmune disease. J. Exp. Med. 2012; 209(10): 1781-95.
47. Irani S.R., Alexander S., Waters P. et al. Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan’s syndrome and acquired neuromyotonia. Brain 2010; 133(9): .2734–48
48. Jacob S., Viegas S., Leite M.I. et al. Presence and pathogenic relevance of antibodies to clustered acetylcholine receptor in ocular and generalized myasthenia gravis. Arch. Neurol. 2012; 69: 994–1001.
49. Jofra T., Di Fonte R., Hutchinson T.E. et al. Tyrosine phosphatase PTPN22 has dual roles in promoting pathogen versus homeostatic-driven CD8 T-cell responses. Immunol. Cell. Biol. 2017; 95(2): 121-128. doi: 10.1038/icb.2016.92.
50. Kanai T., Uzawa A., Kawaguchi N. et al. HLA-DRB1*14 and DQB1*05 are associated with Japanese anti-MuSK antibody-positive myasthenia gravis patients. J. Neurol. Sci. 2016; 363: 116–8.
51. Katzberg H.D., Barnett C., Merkies I.S. et al. Minimal clinically important difference in myasthenia gravis: outcomes from a randomized trial. J. Muscle. Nerve. 2014; 49(5): 661–5.
52. Kawasaki T., Kawai T. Toll-like receptor signaling pathways. Front. Immu nol. 2014; 5: 461.
53. Kirkbride K.C., Sung B.H., Sinha S., Weaver A.M. Cortactin: a multi-functional regulator of cellular invasiveness. Cell. Adh. Migr. 2011; 5: 187–98.
54. Kirsten H., Blume M., Emmrich F. et al. No association between systemic sclerosis and C77G polymorphism in the human PTPRC (CD45) gene. J. Rheumatol. 2008; 35: 1817–9.
55. Kitz A.., de Marcken M, Gautron A.S. et al. AKT isoforms modulate Th1-like Treg generation and function in human autoimmune disease. EMBO Rep. 2016; 17(8): 1169-83. doi: 10.15252/embr.201541905.
56. Kusner L.L., Ciesielski M.J., Marx A. et al. Survivin as a potential mediator to support autoreactive cell survival in myasthenia gravis: a human and animal model study. PLoS One. 2014; 9(7): 102231. doi: 10.1371/journal.pone.0102231
57. Labrador-Horrill M., Martínez M.A., Sel va-O’Callaghana A. et al. Identification of a novel myositis-associated antibody directed against cortactin. Autoimmun. Rev. 2014;13(10): 1008-12. doi:10.1016/j.autrev.2014.08.038
58. Langrish C.L., Chen Y., Blumenschein W.M. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 2005; 201: 233–40.
59. Lee Y., Awasthi A., Yosef N., Quintana F.J., Xiao S. et al. Induction and molecular signature of pathogenic TH17 cells. Nat Immunol 2012; 13: 991–9. doi62. cells in myasthenia gravis patients: 10.1038/ni.2416 doi: 10.1038/ni.2416.
60. Li H.F., Hong Y., Zhang X. et al. Gene Polymorphisms for both auto-antigen and immune-modulating proteins are associated with the susceptibility of autoimmune myasthenia gravis. Mol. Neurobiol. 2016; 54(6): 4771-4780. doi: 10.1007/s12035-016-0024-y.
61. Li X., Mingliao N., Yang H. et al. Review Article Protein tyrosine phosphatase nonreceptor type 22 (PTPN22) gene R620W polymorphism is associated with inflammatory bowel disease risk. Int. J. Clin. Exp. Med. 2017; 10(7): 9857-63.
62. Lindsay B. The immune system. Nicholson Essays in Biochemistry. 2016; 60: 275–301. doi: 10.1042/EBC20160017
63. Lopomo A., Berrih-Aknin S. Autoimmune Thyroiditis
64. and Myasthenia Gravis. Front. Endocrinol. 2017; 8: 169.
65. doi: 10.3389/fendo.2017.00169.
66. Maniaol A.H., Elsais A., Lorentzen A.R. et al. Late onset myasthenia gravis is associated with HLA DRB1*15:01 in the Norwegian population. PLoS One. 2012; 7(5): 36603.
67. Masuda M.., Matsumoto M, Tanaka S. et al. Clinical implication of peripheral CD4+CD25+ regulatory T cells and Th17 cells in myasthenia gravis patients. J. Neuroimmunol. 2010; 225: 123–31.
68. Masuda T., Motomura M., Utsugisawa K. et al. Antibodies against the main immunogenic region of the acetylcholine receptor correlate with disease severity in myasthenia gravis. J. Neurol. Neurosurg. Psychiatry. 2012; 83: 935–40.
69. Matsui N., Nakane S., Saito F. et al. Undiminished regulatory T cells in the thymus of patients with myasthenia gravis. Neurology. 2010; 74: 816–20.
70. Melzer N., Ruck T., Fuhr P. et al. Clinical features, pathogenesis, and treatment of myasthenia gravis: a supplement to the guidelines of the German Neurological Society. J. Neurol. 2016; 263(8): 1473–94. doi: 10.1007/s00415-016-8045-z
71. Meriggioli M.N., Sanders D.B. Muscle autoantibodies in myasthenia gravis: beyond diagnosis? Expert. Rev. Clin. Immunol. 2012; 8(5): 427–38.
72. Meyer A., Levy Y. Chapter 33: Geoepidemiology of myasthenia gravis. J. Autoimmun. Rev. 2010; 9: 383–6. doi:10.1016/j.autrev.2009.11.011
73. Miyara M., Gorochov G., Ehrenstein M., Musset L., Sakaguchi S., Amoura Z. Human FoxP3+ regulatory T cells in systemic autoimmune. Autoimmun. Rev. 2011; 12: 744-55.
74. Mori S., Kubo S., Akiyoshi T. et al. Antibodies against muscle-specific kinase impair both presynaptic and postsynaptic functions in a murine model of myasthenia gravis. Am. J. Pathol. 2012; 180: 798–810.
75. Mori S., Shigemoto K. Mechanisms associated with the pathogenicity of antibodies against muscle-specific kinase in myasthenia gravis. Autoimmun. Rev. 2013; 12: 912–7.
76. Mu L., Sun B., Kong Q. et al. Disequilibrium of T helper type 1, 2 and 17 cells and regulatory T cells during the development of experimental autoimmune myasthenia gravis. Immunology. 2009; 128: 826–36.
77. Nabi G., Akhter N., Wahid M. et al. Meta-analysis reveals PTPN22 1858C/T polymorphism confers susceptibility to rheumatoid arthritis in Caucasian but not in Asian population. J. Autoim-mun. 2016; 49(3): 197-210. doi: 10.3109/08916934.2015.1134514.
78. Notarangelo L.D. Immunodeficiency and Immune Dysregulation Associated with Proximal Defects of T Cell Receptor Signaling. Curr. Opin. Immunol. 2014; 10: 97–101. doi: 10.1016/j.coi.2014.10.003
79. O’Neill L.A., Golenbock D., Bowie A.G. The history of Toll-like receptors —redefining innate immunity. Nat. Rev. Immunol. 2013; 13: 453–60.
80. Pevzner A., Schoser B., Peters K. et al. Anti-LRP4 autoantibodies in AChR- and MuSK-antibody-negative myasthenia gravis. Journal of Neurology. 2011; 259(3): 427–35.
81. Phillips W.D., Vincent A. Pathogenesis of myasthenia gravis: update on disease types, models, and mechanisms. F1000 Faculty Rev. 2016; 5: 1513. doi: 10.12688/f1000research.8206.1
82. Pierce S.K., Liu W. The tipping points in the initiation of B cell signalling: how small changes make big differences. Nat. Rev. Immunol. 2010; 10 (11): 767–77.
83. Pot C., Apetoh L. Lione, Kuchro o V.K. Type 1 regulatory T cells (Th1) in autoimmunity. Seminars in Immunology. 2011; 23(3): 202-8. https://doi.org/10.1016/j.smim.2011.07.005
84. Provenzano C., Ricciardi R., Scuderi F. et al. PTPN22 and myasthenia gravis: replication in an Italian population and meta-analysis of literature data. J. Neuromusc. Disord .2012; 22(2): 131–8.
85. Punga A.R., Lin S., Oliveri F. et al. Muscle-selective synaptic disassembly and reorganization in MuSK antibody positive MG mice. Exp. Neurol. 2011; 230(2): 207-17. doi: 10.1016/j.expneurol.2011.04.018.
86. Ramanujam R., Pirskanen R., Hammarström L. The CD45 77C/G allele is not associated with myasthenia gravis — a reassessment of the potential role of CD45 in autoimmunity. BMC Res. Notes. 2010; 3: 292. doi: 10.1186/1756-0500-3-292
87. Roche J.C., Capablo J.L., Larrad L. et al. Increased serum interleukin-17 levels in patients with myasthenia gravis. Muscle Nerve. 2011; 44: 278–80.
88. Romi F., Suzuki S., Suzuki N. et al. Anti-voltage-gated potassium channel Kv1.4 antibodies in myasthenia gravis. Journal of Neurology. 2012; 259(7): 1312–16.
89. Romi F., Suzuki S., Suzuki N. et al. Clinical Characteristics of Patients with Double-Seronegative Myasthenia Gravis and Antibodies to Cortactin. J. Neurol. 2012; 259: 1312. doi:10.1007/s00415-011-6344-y
90. Sabatos-Peyton C.A., Verhagen J., Wraith D.C. Antigen-specific immunotherapy of autoimmune and allergic diseases. Curr. Opin. Immunol. 2010; 22(5): 609–15.
91. Sakaguchi S., Benham H., Cope A.P. et al. T-cell receptor signaling and the pathogenesis of autoimmune arthritis: insights from mouse and man. Immunol. Cell. Biol. 2012; 90(3): 277-87. doi: 10.1038/icb.2012.4.
92. Selmi C. Autoimmunity in 2010. Autoimmun. Rev. 2011; 10: 725–32.
93. Shen C., Lu Y., Zhang B. et al. Antibodies against low-density lipo-protein receptor-related protein 4 induce myasthenia gravis. J. Clin. Invest. 2013; 123: 5190–202.
94. Sheng J.R., Muthusamy T., Prabhakar B.S. et al. GM-CSF-induced regulatory T cells selectively inhibit anti-acetylcholine receptor-specific immune responses in experimental myasthenia gravis. J. Neuroimmunol. 2011; 240–241: 65–73.
95. Shin D.S., Jordan A., Basu S. et al. Regulatory T cells suppress CD4+
96. T cells through NFAT-dependent transcriptional mechanisms. EMBO Rep. 2014; 15(9): 991-9.
97. Stanford S.M., Rapini N., Bottini N. Regulation of TCR signalling by tyrosine phosphatases: from immune homeostasis to autoimmunity. Immunology. 2012; 137(1): 1–19. doi: 10.1111/j.1365-2567.2012.03591.x
98. Stanford S.M., Bottini N. PTPN22: the archetypal non-HLA autoimmunity gene. J. Nat. Rev. Rheumat. 2014; 10: 602–11. doi:10.1038/nrrheum.2014.109
99. Suh J., Goldstein J.M., Nowak R.J. Clinical characteristics of refractory myasthenia gravis patients. Yale. J. Biol. Med. 2013; 86(2): 255–60.
100. Suzuki S., Nagane Y., Suzuki N. Three types of striational antibodies in myasthenia gravis., Autoimmune Dis. 2011; 2011: 740583. doi: 10.4061/2011/740583.
101. Tavares N.A.C., Santos M.M.S., Moura R. et al. Association of TNF-α, CTLA4, and PTPN22 polymorphisms with type 1 diabetes and other autoimmune diseases in Brazil. Genetics and Molecular Research. 2015; 14 (4): 18936-44. doi:10.4238/2015.December.28.42
102. Thiruppathi M., Rowin J., Jiang Q.L. et al. Functional defect in regulatory T cells in myasthenia gravis. Ann. N. Y. Acad. Sci. 2012; 1274(1): 68–76. doi:10.1111/j.1749-6632.2012.06840.x
103. Tuzun E., Christadoss P. Complement associated pathogenic mechanisms in myasthenia gravis. Autoimmun. Rev. 2013; 12: 904-11.
104. doi: 10.1016/j.autrev.2013.03.003.
105. Uzawa A., Kanai1 T., Kawaguchi N. et al. Changes in inflammatory cytokine networks in myasthenia gravis. Sci. Rep. 2016; 6: 25886-91. doi: 10.1038/srep25886
106. Uzawa A., Kawaguchi N., Kanai T. et al Relationship between damage-associated molecular patterns and cytokines in myasthenia gravis. Clinical and Experimental Neuroimmunology. 2016; 7(4): 357-60.
107. Uzawa A., Kawaguchi N., Himuro K. et al. Serum cytokine and chemo-kine profiles in patients with myasthenia gravis. Clin. Exp. Immunol. 2014; 176: 232–7.
108. van der Merwe P.A., Dushek O. Mechanisms for T cell receptor triggering. Nat. Rev. 2011; 11: 47–55.
109. Vang T., Miletic A.V. Protein tyrosine phosphatases in autoimmunity. Annu. Rev. Immunol 2008, 26: 29-55.
110. Verschuuren J.J., Huijbers M.G., Plomp J.J., et al. Pathophysiology of myasthenia gravis with antibodies to the acetylcholine receptor, muscle-specific kinase and low-density lipoprotein receptor-related protein 4. Autoimmun. Rev. 2013; 12(9): 918–923. 10.1016/j.aut-rev.2013.03.001
111. Vincent A., Huda S., Cao M. Serological and experimental studies in different forms of myasthenia gravis., Ann. N. Y. Acad. Sci. 2018 Feb 29; 1413(1): 143-53.
112. Walker L.S. Regulatory T cells overturned: the effectors fight back. Immunology. 2009; 126: 466– 474.
113. Wang H., Kadlecek T.A., Au-Yeung B.B. et al. ZAP-70: An Essential Kinase in T-cell Signaling. Perspect Biol. 2010; 2: 002279.
114. Wang L., Zhang Y., He M. Clinical predictors for the prognosis of myasthenia gravis BMC Neurol. 2017; 17: 77. doi: 10.1186/s12883-017-0857-7
115. Wang W.W., Hao H.J., Gao F. Detection of multiple antibodies in myasthenia gravis and its clinical significance. Chin. Med. J. (Engl). 2010; 123: 2555-8.
116. Weiss A. The right team at the right time to go for a home run: tyrosine kinase activation by the TCR. Nat. Immunol. 2010; 11: 101–4.
117. Workman C.J., Szymczak-Workman A.L., Collison L.W. et al. The development and function of regulatory T cells. Cell. Mol. Life Sci. 200; 66: 2603–22.
118. Yan Q., Barros T., Visperas P.R. et al. Structural Basis for Activation of ZAP-70 by Phosphorylation of the SH2-Kinase Linker. Molecular and Cellular Biology. 2013; 33(11): 2188 –2201.
119. Yeha J.-H., Wang S.-H., Chienc P.-J. et al. Changes in serum cytokine levels during plasmapheresis in patients with myasthenia gravis. European Journal of Neurology. 2009; 16: 1318–22. doi:10.1111/j.1468-1331.2009.02729.x
120. Yilmaz V., Oflazer P., Aysal F. et al. B cells produce less IL-10, IL-6 and TNF-α in myasthenia gravis. 2014; 23: 201-7. doi:10.3109/08916934.2014.992517
121. Yilmaz V., Oflazer P., Aysal F. et al. Differential Cytokine Changes in Patients with Myasthenia Gravis with Antibodies against AChR and MuSK. PLoS ONE. 2015; 10(4): 1-12.
122. Yumoto N., Kim N., Burden S.J. Lrp4 is a retrograde signal for presynaptic differentiation at neuromuscular synapses. Nature. 2012; 489: 438–42.
123. Zhang B., Shen C., Bealmear B. et al. Autoantibodies to Agrin in Myasthenia Gravis Patients. PLoS ONE. 2014; 9(3): 91816. doi:10.1371/journal.pone.0091816
124. Zielinski C.E., Mele F., Aschenbrenner D. et al. Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β. Nature. 2012; 484(7395): 514-8. doi: 10.1038/nature10957
125. Zisimopoulou P., Brenner T., Trakas N., Tzartos S.J. Serological diagnostics in myasthenia gravis based on novel assays and recently identified antigens. Autoimmun Rev. 2013; 12: 924–30.
Review
For citations:
Gasymly E.D. IMMUNOPATHOGENESIS OF MYASTHENIA GRAVIS (REVIEW). The Russian Archives of Internal Medicine. 2018;8(3):176-185. https://doi.org/10.20514/2226-6704-2018-8-3-176-185