Preview

The Russian Archives of Internal Medicine

Advanced search

Drug Compatibility in Treatment of Chronic Infectious Diseases

https://doi.org/10.20514/2226-6704-2021-11-5-344-358

Abstract

The article considers the features of pharmacotherapy of patients with chronic infectious diseases and co-morbidities in conditions of polypharmacy, the principles of drug metabolism, variants of adverse effects and drug-drug interactions, the possibilities of effective drug combinations. The purpose is to substantiate the possibility and emphasize the relevance of the additional search of the creation of the most optimal combinations of drugs for long-term and massive pharmacotherapy, that could be due to a beneficial drug-drug interaction, optimization of the regimen, route of drug administration and multitarget of the therapeutic effect, reduce the pharmacological load while maintaining the effectiveness of the treatment, increase patient adherence to drug therapy.

About the Authors

E. S. Bazrova
Federal State Budgetary Institution «National Medical Research Center of Phthisiopulmonology and Infectious Diseases»
Russian Federation

Elena S. Bazrova

Moscow



G. D. Kaminskiy
Federal State Budgetary Institution «National Medical Research Center of Phthisiopulmonology and Infectious Diseases»
Russian Federation

Moscow



L. Yu. Ilchenko
Federal State Budgetary Institution «National Medical Research Center of Phthisiopulmonology and Infectious Diseases»; Federal State Autonomous Institution «Treatment and Rehabilitation Center» Ministry of Health of Russia
Russian Federation

Moscow



A. Маtin
Department of Hospital Therapy № 2 of the Federal State Autonomous Educational Institution of Higher Education «N.I. Pirogov Russian National Research Medical University» Ministry of Health of Russia
Russian Federation

Moscow



I. G. Nikitin
Federal State Autonomous Institution «Treatment and Rehabilitation Center» Ministry of Health of Russia; Department of Hospital Therapy № 2 of the Federal State Autonomous Educational Institution of Higher Education «N.I. Pirogov Russian National Research Medical University» Ministry of Health of Russia
Russian Federation

Moscow



References

1. Naranjo CA, Busto U, Sellers EM, et al. A method for estimating the probability of adverse drug reactions. Clin.Pharmacol.Ther. 1981; 30(2): 239-245. doi: 10.1038/clpt.1981.154

2. Rawlins M, Thompson W. Mechanisms of adverse drug reactions. Textbook of adverse drug reactions, ed. Davies D.M. New York. Oxford University Press. 1991; 18–45.

3. Edwards I.R, Aronson JK. Adverse drug reactions: definitions, diagnosis, and management. Lancet. 2000 Oct 7; 356(9237): 1255-9. doi: 10.1016/S0140-6736(00)02799-9.

4. Drug and Therapeutics Committee Training Course. Session 4. Assessing and Managing Medicine Safety Trainer’s Guide. WHO [Electronic resource]. URL: https://www.who. int/medicines/technical_briefing/tbs/04-PG_Dug-Safety_ final-08.pdf?ua=1#:~:text=Adverse%20drug%20reaction%20 (ADR)%E2%80%94,the%20modification%20of%20 physiological%20function.%E2%80%9D (date of application: 26.05.2021).

5. Defenitions, WHO [Electronic resource]. URL:https://www.who.int/medicines/areas/quality_safety/safety_ efficacy/trainingcourses/definitions.pdf (date of application: 26.05.2021).

6. Caviglia G.P, Rizzetto M. Treatment of hepatitis D: an unmet medical need. Clin.Microbiol Infect. 2020; 26(7): 824-827. doi: 10.1016/j. cmi.2020.02.031

7. Kiriljuk A.A., Petrishche T.L. Features of the influence of food products and their components on the pharmacological activity of drugs. Current problems of health care and medical statistics. 2017; 1: 51-64. [In Russian].

8. Durnev A.D. Food-drug interactions: genotoxicological aspects. Farmakokinetika i farmakodinamika. 2016; 2: 4-9. [In Russian].

9. Lietman PS. Chloramphenicol and the neonate--1979 view. Clin. Perinatol. 1979; 6(1): 151-162.

10. Snider, D.E.Jr. Pyridoxine supplementation during isoniazid therapy. Tubercle. 1980; 61(4): 191-196. doi:10.1016/0041-3879(80)90038-0

11. Satyrova T.V. The acetylated status: present-day point of view on the subject. Health and ecology issues. 2009. 4(22): 31-36. [In Russian].

12. Sychev D.A., Kukes V.G., Tashenova A.I. Pharmacogenetic Testing: A New Medical Technology. Medical Technologies. Assessment and Choice. 2010; 1(75): 51-58. [In Russian].

13. Sychev D., Antonov I., Ignatev I., et al. Advantages of pharmacogenetic approach (polimorphisms of genes CYP2C9 and VKORC1 study) to warfarin dosing, against the standard method for Russian patients with contestant form atrial fibrilation. J Basic Clin.Pharmacol 2009; 105: 73-74.

14. Sychev D.A., Antonov I.M., Zagrebin S.V., et al. Algorithms for dosing warfarin based on the results of pharmacogenetic testing: a real opportunity of optimizing pharmacotherapy. Rational pharmacother. Card. 2007; 3(2): 59-66. [In Russian].

15. Wu L., Ye Z., Liu H., et al. Rapid and highly sensitive quantification of the anti-tuberculosis agents isoniazid, ethambutol, pyrazinamide, rifampicin and rifabutin in human plasma by UPLC-MS/MS. J Pharm Biomed Anal. 2020; 180: 113076. doi: 10.1016/j.jpba.2019.11307

16. Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis. Drugs. 2002; 62(15): 2169-2183. doi: 10.2165/00003495-200262150-0000

17. Meloni M., Corti N., Müller D., et al. Cure of tuberculosis despite serum concentrations of antituberculosis drugs below published reference ranges. Swiss Med Wkly. 2015; 145:w14223. doi: 10.4414/smw.2015.14223

18. Parikh UM, McCormick K, van Zyl G, et al. Future technologies for monitoring HIV drug resistance and cure. Curr.Opin HIV AIDS. 2017; 12(2):182-189. doi: 10.1097/COH.0000000000000344

19. Lai J.M.L, Yang S.L, Avoi R. Treating More with Less: Effectiveness and Event Outcomes of Antituberculosis Fixed-dose Combination Drug versus Separate-drug Formulation (Ethambutol, Isoniazid, Rifampicin and Pyrazinamide) for Pulmonary Tuberculosis Patients in Real-world Clinical Practice. J Glob.Infect.Dis. 2019; 11(1): 2-6. doi: 10.4103/jgid. jgid_50_18

20. Mukherjee A., Lodha R., Kabra SK. Pharmacokinetics of First-Line Anti-Tubercular Drugs. Indian J Pediatr. 2019; 86(5): 468-478. doi: 10.1007/s12098-019-02911-w

21. Shikh E.V., Ismagilov A.D., Sizova Zh.M., et al. Safety of combination pharmacotherapy in elderly patients. The Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. 2017; 7(1):47-54. [In Russian].

22. Shmagel’ N.G., Shmagel’ Konstantin V., Korolevskaya L.B., et al. Systemic inflammation and compromised intestinal barrier during successful treatment of HIV infection. Clinical medicine. 2016; 94(1): 47-51. doi: 10.18821/0023-2149-2016-94-1-47-51 [In Russian].

23. Bandera A., De Benedetto I., Bozzi G, et al. Altered gut microbiome composition in HIV infection: causes, effects and potential intervention. Curr.Opin HIV AIDS. 2018; 13(1): 73-80. doi: 10.1097/COH.0000000000000429

24. Condratenko S.N., Starodubtsev A.K. Features of the absorption of certain drugs in patients with various diseases of the gastrointestinal tract. Journal Biomed. 2006; 5: 29-30. [In Russian].

25. Khasanova G.M., Urunova D.M., Akhmedzhanova Z.I., et al. Defeat of the gastrointestinal tract in hiv infection. Pacific Medical Journal. 2019; (3): 24-28. https://doi.org/10.17238/PmJ1609- 1175.2019.3.24-28 [In Russian].

26. Iacob S., Iacob D.G. Infectious Threats, the Intestinal Barrier, and Its Trojan Horse: Dysbiosis. Front.Microbiol. 2019; 10: 1676. doi: 10.3389/fmicb.2019.01676

27. Pinto-Cardoso S., Klatt N.R., Reyes-Terán G. Impact of antiretroviral drugs on the microbiome: unknown answers to important questions. Curr.Opin HIV AIDS. 2018 Jan; 13(1): 53-60. doi: 10.1097/COH.0000000000000428

28. The Liverpool HIV-Drug Interactions website by the University of Liverpool. 2021. [Electronic resource]. URL: https://www.hivdruginteractions.org/checker (date of application: 26.05.2021).

29. The Liverpool Drug Interactions website by the University of Liverpool. 2021. [Electronic resource]. URL: https://www.hepdruginteractions.org/checker (date of application: 26.05.2021).

30. McMurray J.J.V., Solomon S.D., Inzucchi S.E., et al. Dapagliflozinin Patients with Heart Failure and Reduced Ejection Fraction. NEJM. 2019; 381(21):1995-2008. doi: 10.1056/NEJMoa1911303

31. Guaraldi G., Milic J., Mussini C. et al. Aging with HIV. Curr HIV/AIDS Rep. 2019; 16(6):475-481. doi: 10.1007/s11904-019-00464-3

32. McGettrick P., Barco E.A., Mallon P.W.G. Ageing with HIV. Healthcare (Basel). 2018; 6(1):17. doi: 10.3390/healthcare6010017

33. Lundgren J.D., Battegay M., Behrens G., et al. EACS Executive Committee. European AIDS Clinical Society (EACS) guidelines on the prevention and management of metabolic diseases in HIV. HIV Med. 2008; 9(2):72-81. doi: 10.1111/j.1468-1293.2007.00534.x

34. Matiyevskaya N.V., Prokopchik N.I., Tsyrkunov V.M. Pathomorphological features of liver injury in tuberculosis/HIV coinfection. Journal of the Grodno Stste Medical University. 2012; 1(37): 66-69. [In Russian].

35. Baikova I.E., Nikitin I.G. Drug liver damage. Russian Medical Journal. 2009; 1: 1 [In Russian].

36. Sitdikov I.I., Moskaleva A.V., Vlasova T.I. Hepatotoxic effects of antiretroviral therapy — myth or reality. Vestnik SMUS74. 2017; 419: 50-55. [In Russian].


Review

For citations:


Bazrova E.S., Kaminskiy G.D., Ilchenko L.Yu., Маtin A., Nikitin I.G. Drug Compatibility in Treatment of Chronic Infectious Diseases. The Russian Archives of Internal Medicine. 2021;11(5):344-358. https://doi.org/10.20514/2226-6704-2021-11-5-344-358

Views: 988


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-6704 (Print)
ISSN 2411-6564 (Online)