Preview

The Russian Archives of Internal Medicine

Advanced search

Pathogenetic Relationship of Immunological Disorders in Chronic Generalized Periodontitis and Rheumatoid Arthritis

https://doi.org/10.20514/2226-6704-2022-12-3-203-211

Abstract

The pathogenetic mechanisms of progression of chronic periodontitis accompanied with rheumatoid arthritis is confirmed by the common parts of immune-inflammatory reactions.
Damage to periodontal tissues is indirectly made by cytotoxic effects of enzymes and their metabolites produced by Porphyromonas gingivalis bacteria. Neutrophils contribute to the progression of periodontitis and participate in its amplification by recruiting T-helper cells 17 and contributing to the accumulation of plasma cells in the affected tissues. Activation of immunocompetent cells promotes the generation of reactive oxygen species that initiate free radical oxidation of lipids, which, combined with the inability to neutralize them due to reduced antioxidant potential, leads to the development of oxidative stress.
The connection between rheumatoid arthritis and chronic periodontitis has been the focus of numerous studies, due to their common pathogenetic mechanisms. Chronic inflammation associated with both rheumatoid arthritis and chronic periodontitis is similar in its prevailing adaptive immune phenotype, an imbalance between pro- and anti-inflammatory cytokines. The involvement of the Porphyromonas gingivalis microorganism in the generation of antibodies to citrullinated peptides in patients with rheumatoid arthritis is significant. The similarity of the epitope (SE) encoding the HLA-DRB1 allele, binding citrullinated peptides, can act as a basis for the approval of the genetic predisposition and mutual potential of these diseases. Thus, the proven connection between chronic periodontitis and rheumatoid polyarthropathies determines the significance of the analysis of the data obtained and substantiates the need for strategic research aimed at developing new methods in the diagnosis, treatment and prevention of the diseases for the purpose of breaking and separation of the common pathogenetic mechanisms of inflammatory reactions and osteoresorption processes leading to persistent functional and organic disorders.

About the Authors

G. V. Poryadin
Pirogov Russian National Research Medical University
Russian Federation

Moscow


Competing Interests:

The authors declare no conflict of interests



A. N. Zakhvatov
National Research Ogarev Mordovia State University, Medical institute
Russian Federation

Saransk


Competing Interests:

The authors declare no conflict of interests



A. Y. Parshina
National Research Ogarev Mordovia State University, Medical institute
Russian Federation

Saransk


Competing Interests:

The authors declare no conflict of interests



References

1. Tibúrcio-Machado CS, Michelon C, Zanatta FB, et al. The global prevalence of apical periodontitis: a systematic review and metaanalysis. Int Endod J. 2021; 54(5):712-735. doi:10.1111/iej.13467.

2. Jakovljevic A, Nikolic N, Jacimovic J, et al. Prevalence of Apical Periodontitis and Conventional Nonsurgical Root Canal Treatment in General Adult Population: An Updated Systematic Review and Meta-analysis of Cross-sectional Studies Published between 2012 and 2020. J Endod. 2020; 46(10):1371-1386. doi:10.1016/j.joen.2020.07.007.

3. Blashkova S L, Martyanova M V. The role of preventive hygiene in the prevention of caries and periodontal disease in young age. Russian Stomatology. 2016;9(4):51-53. doi:10.17116/rosstomat20169451-53

4. G.A. Roth, M. Cunningham, A. Afshin et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet. 2018; 392(10159):1736-1788. doi:10.1016/S0140-6736(18)32833-2.

5. Zorina OA, Aymadinova NK, Boriskina OA, et al. Major changes in the normal periodontal microbiome associated with chronic generalized periodontitis as detected by metagenomic sequencing. Russian Stomatology. 2017; 10(2):41-48. doi:10.17116/rosstomat201710241-48. [In Russian]

6. Madianos, P.N., Bobetsis, Y.A., Offenbacher S. Adverse pregnancy outcomes (APOs) and periodontal disease: pathogenic mechanisms. Journal of Clinical Periodontology. 2013; 40(14): 170-180. doi:10.1111/jcpe.12082.

7. de Molon RS, Rossa C Jr, Thurlings RM, et al. Linkage of periodontitis and rheumatoid arthritis: current evidence and potential biological interactions. International journal of molecular sciences. 2019; 20(18):4541-4586. doi:10.3390/ijms20184541.

8. P. Bender, W.B. Bürgin, A. Sculean et al. Serum antibody levels against Porphyromonas gingivalis in patients with and without rheumatoid arthritis — a systematic review and meta-analysis. Clin Oral Investig. 2017; 21(1):33-42. doi:10.1007/s00784-016-1938-5.

9. Esberg A, Johansson L, Johansson I, Dahlqvist SR. Oral Microbiota Identifies Patients in Early Onset Rheumatoid Arthritis. Microorganisms. 2021; 9:1657. doi:10.3390/microorganisms9081657.

10. Lundmark A, Hu YOO, Huss M, et al. Identification of Salivary Microbiota and Its Association With Host Inflammatory Mediators in Periodontitis. Front Cell Infect Microbiol. 2019; 21(9):216. doi:10.3389/fcimb.2019.00216.

11. Nadim R, Tang J, Dilmohamed A et al. Influence of periodontal disease on risk of dementia: a systematic literature review and a meta-analysis. Eur J Epidemiol. 2020;35(9):821–833. doi:10.1007/s10654-020-00648-x.

12. Bobetsis YA, Graziani F, Gürsoy M, et al. Periodontal disease and adverse pregnancy outcomes. Periodontol 2000. 2020; 83(1):154–174. doi:10.1111/prd.12294.

13. Bilyi A.K., Antypenko L.M., Ivchuk V.V., at al. I2-heteroaryl- [1,2,4]triazolo[1,5-c]quinazoline-5(6 H)-thiones and their S-substituted derivatives: Synthesis, spectroscopic data, and biological activity. ChemPlusChem. 2015; 80(6): 980-989. doi:10.1002/cplu.201500051.

14. Curtis MA, Diaz PI, Van Dyke TE. The role of the microbiota in periodontal disease. Periodontol 2000. 2020; 83(1):14–25. doi:10.1111/prd.12296.

15. Hajishengallis G, Korostoff JM. Revisiting the Page & Schroeder model: The good, the bad and the unknowns in the periodontal host response 40 years later. Periodontology 2000. 2017; 75(1): 116-151. doi:10.1111/prd.12181.

16. Cekici A, Kantarci A, Hasturk H, et al. Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontology 2000. 2014; 64(1):57-80. doi:10.1111/prd.12002.

17. Kang W, Hu Z, Ge S. Healthy and Inflamed Gingival Fibroblasts Differ in Their Inflammatory Response to Porphyromonas gingivalis Lipopolysaccharide. Inflammation. 2016; 39(5):1842-1852. doi:10.1007/s10753-016-0421-4.

18. Huang, N., Dong, H., Luo, Y., et al. Th17 Cells in Periodontitis and Its Regulation by A20. Frontiers in immunology. 2021; 12:125-137. doi:10.3389/fimmu.2021.742925.

19. Zhang Y., Li X. Lipopolysaccharide–regulated production of bone sialoprotein and interleukin–8 in human periodontal ligament fibroblasts: the role of toll–like receptors 2 and 4 and the MAPK pathway. Journal of periodontal research. 2015; 50(2):141-151. doi:10.1111/jre.12193.

20. Grigorkevich O.S., Mokrov G.V., Kosova L.Yu. Matrix metalloproteinases and their inhibitors. Pharmacokinetics and Pharmacodynamic. 2019; 2: 3-16. doi:10.24411/2587-7836-2019-10040 [InRussian].

21. Bazarny V.V., Polushina L.G., Maksimova A.Yu., et al. Clinical and diagnostic characteristics of salivary matrix metalloproteinases as potential biomarkers in chronic periodontitis. Laboratory service. 2020; 9(4): 54-58. doi:10.17116/labs2020904154[In Russian].

22. Leone A., Uzzo M.L., Rappa F., et al. Immunohistochemical expression of apoptotic factors, cytokeratins, and metalloproteinase-9 in periapical and epithelialized gingival lesions. FoliaHistochemCytobiol. 2012; 50(4): 497-503. doi:10.5603/FHC.2012.0070.

23. Savel’eva N.N. The state of the lipid peroxidation system and antioxidant protection in patients with chronic generalized periodontitis I-II severity, combined with parasitosis. Journal of Education, Health and Sport. 2015; 5(12): 465-476. doi:10.5281/zenodo.35707 [In Russian].

24. Callaway D.A. Jiang J.X. Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases. Journal of Bone and Mineral Metabolism. 2015; 33(4): 359–370. doi:10.1007/s00774-015-0656-4.

25. Almubarak A, Tanagala KKK, Papapanou PN, et al. Disruption of Monocyte and Macrophage Homeostasis in Periodontitis. Front Immunol. 2020; 11: 330. doi:10.3389/fimmu.2020.00330.

26. Fang C, Wu L, Zhao MJ, et al. Periodontitis Exacerbates Benign Prostatic Hyperplasia through Regulation of Oxidative Stress and Inflammation. OxidMedCellLongev. 2021; 2021: 2094665. doi:10.1155/2021/2094665.

27. Kondjurova E.V., Prytkov V.A., Vlasov A.P., et al. Metabolic disorders in chronic generalized periodontitis. Russian Journal of Dentistry. 2016; 20(5): 251-256. doi:10.18821/1728-28022016;20(5):251-256 [In Russian].

28. Perricone C, Ceccarelli F, Saccucci M, et al. Porphyromonas gingivalis and rheumatoid arthritis. Curr Opin Rheumatol. 2019; 31(5):517-524. doi:10.1097/BOR.0000000000000638.

29. Engstrom, M., Eriksson, K., Lee, L., et al. Increased citrullination and expression of peptidylarginine deiminases independently of P. gingivalis and A. actinomycetemcomitans in gingival tissue of patients with periodontitis. Journal of Translational Medicine. 2018; 16(1): 214-240. doi:10.1186/s12967-018-1588-2.

30. Poulsen TBG, Damgaard D, Jørgensen MM, et al. Identification of potential autoantigens in anti-CCP-positive and anti-CCP-negative rheumatoid arthritis using citrulline-specific protein arrays. Sci Rep. 2021;11(1):17300. doi:10.1038/s41598-021-96675-z.

31. Konig, M.F., Abusleme, L., Reinholdt, J, et al. Aggregatibacter actinomycetemcomitans-induced hypercitrullination links periodontal infection to autoimmunity in rheumatoid arthritis. Science translational medicine. 2016; 8(369): 176-369. doi:10.1126/scitranslmed.aaj1921.

32. Bettner LF, Peterson RA, Bergstedt DT, et al. Combinations of anticyclic citrullinated protein antibody, rheumatoid factor, and serum calprotectin positivity are associated with the diagnosis of rheumatoid arthritis within 3 years. ACR Open Rheumatol. 2021; 3(10): 684-689. doi:10.1002/acr2.11309

33. Zahvatov A.N., Kozlov S.A., Atkina N.A., et al. Time course of cytokine levels in experimental posttraumatic arthritis. Medical Immunology (Russia). 2016; 18(1): 91-96. doi:10.15789/1563-0625-2016-1-91-96 [In Russian].

34. B McInnes, Georg Schett.Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet. 2017; 389(10086): 2328-2337. doi:10.1016/S0140-6736(17)31472-1.

35. Mikhaylova A.S., Lesnyak O.M. Pannus growth regulators as potential targets for biological therapy in rheumatoid arthritis. Modern Rheumatology Journal. 2018; 12(1): 55-59. doi:10.14412/1996-7012-2018-1-55-59 [In Russian].

36. Wagner CA, Sokolove J, Lahey LJ, et al. Identification of anticitrullinated protein antibody reactivities in a subset of antiCCP-negative rheumatoid arthritis: association with cigarette smoking and HLA-DRB1 ‘shared epitope’ alleles. Ann Rheum Dis. 2015; 74(3):579–586. doi:10.1136/annrheumdis-2013-203915.

37. Varshney S, Sharma M, Kapoor S et al. Association between rheumatoid arthritis and periodontitis in an adult population — A cross sectional study. J Clin Exp Dent. 2021; 13(10):980-986. doi:10.4317/jced.57562.

38. Choi YY, Lee KH. Periodontitis as a Risk Factor for Rheumatoid Arthritis: a Matched-Cohort Study. Int Dent J. 2021; 71(6): 516-521. doi:10.1016/j.identj.2021.01.006.

39. Machado, Pedro M. Measurements, composite scores and the art of ‘cutting-off’. Annals of the rheumatic diseases. 2016; 75(5): 787-790. doi:10.1136/annrheumdis-2015-208274.


Review

For citations:


Poryadin G.V., Zakhvatov A.N., Parshina A.Y. Pathogenetic Relationship of Immunological Disorders in Chronic Generalized Periodontitis and Rheumatoid Arthritis. The Russian Archives of Internal Medicine. 2022;12(3):203-211. https://doi.org/10.20514/2226-6704-2022-12-3-203-211

Views: 526


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-6704 (Print)
ISSN 2411-6564 (Online)