Analysis of Inflammation Biomarkers in Exhaled Breath Condensate in Patients with COPD Combined with Peripheral Arterial Disease
https://doi.org/10.20514/2226-6704-2023-13-3-213-223
EDN: PKZRCJ
Abstract
Background. Chronic obstructive pulmonary disease (COPD) is one of the most significant diseases due to its high prevalence and impact on prog- nosis. The frequency of exacerbations and comorbidity are important factors influencing the course of COPD. It is believed that local and systemic inflammation may underlie this heterogeneous course of COPD. In this regard, assessment of local inflammation activity in the respiratory tract may be useful to assess the course of COPD. Aim. To study molecular mechanisms of COPD and assess inflammation biomarkers in the exhaled breath condensate (EBC) in patients with COPD with the phenotype of frequent exacerbations combined with peripheral atherosclerosis. Materials and Methods. Bioinformatic analysis of data from Gene Expression Omnibus (GEO) was performed to examine gene ontology of differentially expressed genes in COPD. Proinflammatory cytokines interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNFα) in EBC in COPD patients without concomitant atherosclerotic cardiovascular disease (ASCVD) in the stable course phase, in patients with COPD with the phenotype of frequent ex- acerbations and peripheral artery disease (PAD) compared with healthy controls were examined. Results. Differentially expressed genes are involved in biological processes and signaling pathways according to the Kyoto Encyclopedia of Genes and Genomes (KEGG pathway) associated with the immune response that may link the development and progression of COPD and atherosclerosis. Patients with COPD combined with atherosclerosis had higher values of IL-1β and TNFα in EBC compared with controls (p <0.001). COPD patients with frequent exacerbations and PAD had the highest levels of IL-1β and TNFα in EBC compared with patients without ASCVD (p=0.0038 and p=0.0005, respectively). Conclusion. TNFα and IL1-β levels in EBC are elevated in COPD patients with frequent exacerbations and PAD, which may indicate the presence of local inflammation in the airways, the severity of which is associated with the clinical course of COPD.
About the Authors
S. N. KotlyarovRussian Federation
Ryazan
I. A. Suchkov
Russian Federation
Ryazan
O. M. Uryasev
Russian Federation
Ryazan
A. A. Kotlyarova
Russian Federation
Ryazan
References
1. Aursulesei Onofrei V., Ceasovschih A., Marcu DTM. et al. Mortality Risk Assessment in Peripheral Arterial Disease—The Burden of Cardiovascular Risk Factors over the Years: A Single Center’s Experience. Diagnostics. 2022; 12(10): 2499. doi:10.3390/diagnostics12102499
2. Tuleta I., Farrag T., Busse L. et al. High prevalence of COPD in atherosclerosis patients. Int J Chron Obstruct Pulmon Dis. 2017; 12: 30473053. doi:10.2147/COPD.S141988
3. Kalinin R.E., Suchkov I.A., Chobanyan A.A. Prospects for forecasting the course of obliterating atherosclerosis of lower limb arteries. NAUKA MOLODYKH Erud Juvenium. 2019; 7(2): 274-282. doi:10.23888/HMJ201972274-282 [in Russian]
4. Kalinin R.E., Suchkov I.A., Кlimentova E.A., Egorov A.A., Karpov V.V. Biomarkers of Apoptosis and Cell Proliferation in Diagnosing the Progression of Atherosclerosis in Different Vascular Pools. I.P. Pavlov Russian Medical Biological Herald. 2022; 30(2): 243-252. doi:10.17816/PAVLOVJ88938 [in Russian]
5. Kalinin R.E., Suchkov I.A., Klimentova EA. et al. The role of different markers in progression of atherosclerotic lesions after open interventions for lower extremity peripheral artery disease. Kardiologiya Serdechno-Sosud Khirurgiya. 2022;15(2):151. doi:10.17116/kardio202215021151 [in Russian]
6. Kotlyarov S. Involvement of the Innate Immune System in the Pathogenesis of Chronic Obstructive Pulmonary Disease. Int J Mol Sci. 2022; 23(2): 985. doi:10.3390/ijms23020985
7. Brassington K., Selemidis S., Bozinovski S. et al. Chronic obstructive pulmonary disease and atherosclerosis: common mechanisms and novel therapeutics. Clin Sci Lond Engl 1979. 2022; 136(6): 405-423. doi:10.1042/CS20210835
8. Kotlyarov S. Immune Function of Endothelial Cells: Evolutionary Aspects, Molecular Biology and Role in Atherogenesis. Int J Mol Sci. 2022;23(17):9770. doi:10.3390/ijms23179770
9. Mussbacher M., Schossleitner K., Kral-Pointner J.B. et al. More than Just a Monolayer: the Multifaceted Role of Endothelial Cells in the Pathophysiology of Atherosclerosis. Curr Atheroscler Rep. 2022; 24(6): 483-492. doi:10.1007/s11883-022-01023-9
10. Botts S.R., Fish J.E., Howe K.L. Dysfunctional Vascular Endothelium as a Driver of Atherosclerosis: Emerging Insights Into Pathogenesis and Treatment. Front Pharmacol. 2021; 12. doi: 10.3389/fphar.2021.787541
11. Trinkmann F., Saur J.., Borggrefe M. Cardiovascular Comorbidities in Chronic Obstructive Pulmonary Disease (COPD)—Current Considerations for Clinical Practice. J Clin Med. 2019; 8(1): 69. doi:10.3390/jcm8010069
12. Bobryshev Y.V., Ivanova E.A., Chistiakov D.A. et al. Macrophages and Their Role in Atherosclerosis: Pathophysiology and Transcriptome Analysis. BioMed Res Int. 2016; 2016: 9582430. doi:10.1155/2016/9582430
13. Eshghjoo S., Kim D.M., Jayaraman A. et al. Macrophage Polarization in Atherosclerosis. Genes. 2022; 13(5): 756. doi:10.3390/genes13050756
14. Ghelli F., Panizzolo M., Garzaro G. et al. Inflammatory Biomarkers in Exhaled Breath Condensate: A Systematic Review. Int J Mol Sci. 2022 Aug 29; 23(17): 9820. doi:10.3390/ijms23179820
15. Patsiris S., Papanikolaou I., Stelios G. et al. Exhaled Breath Condensate and Dyspnea in COPD. In: Vlamos P, ed. GeNeDis 2020. Springer International Publishing; 2021: 339-344.
16. Szunerits S., Dörfler H., Pagneux Q. et al. Exhaled breath condensate as bioanalyte: from collection considerations to biomarker sensing. Anal Bioanal Chem. 2023; 415(1): 27-34. doi:10.1007/s00216-02204433-5
17. Carolan B.J., Heguy A., Harvey B.G. et al. Up-regulation of expression of the ubiquitin carboxyl-terminal hydrolase L1 gene in human airway epithelium of cigarette smokers. Cancer Res. 2006; 66(22): 1072910740. doi:10.1158/0008-5472.CAN-06-2224
18. Barrett T., Wilhite S.E., Ledoux P. et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 2013; 41(D1): D991-D995. doi:10.1093/nar/gks1193
19. Ritchie M.E., Phipson B., Wu D. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015; 43(7): e47-e47. doi:10.1093/nar/gkv007
20. Szklarczyk D., Gable A.L., Lyon D. et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019; 47(D1): D607-D613. doi:10.1093/nar/gky1131
21. Shannon P., Markiel A., Ozier O. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13(11): 2498-2504. doi:10.1101/gr.1239303
22. Bader G.D., Hogue C.W.V. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 2003; 4: 2. doi:10.1186/1471-2105-4-2
23. Chin C.H., Chen S.H., Wu H.H. et al. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014; 8(4): S11. doi:10.1186/1752-0509-8-S4-S11
24. Gundersen G.W., Jones M.R., Rouillard A.D., et al. GEO2Enrichr: browser extension and server app to extract gene sets from GEO and analyze them for biological functions. Bioinforma Oxf Engl. 2015; 31(18): 3060-3062. doi:10.1093/bioinformatics/btv297
25. Ge S.X., Jung D., Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020; 36(8): 2628-2629. doi:10.1093/bioinformatics/btz931
26. Raudvere U., Kolberg L., Kuzmin I., et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019; 47(W1): W191-W198. doi:10.1093/nar/gkz369
27. Ashburner M., Ball C.A., Blake J.A., et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000; 25(1): 25-29. doi:10.1038/75556
28. Kanehisa M., Furumichi M., Sato Y. et al. KEGG for taxonomybased analysis of pathways and genomes. Nucleic Acids Res. 2023; 51(D1): D587-D592. doi:10.1093/nar/gkac963
29. Kanehisa M., Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000; 28(1): 27-30. doi:10.1093/nar/28.1.27
30. Mi H., Muruganujan A., Ebert D. et al. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2019; 47(D1): D419-D426. doi:10.1093/nar/gky1038
31. Venkatesan P. GOLD report: 2022 update. Lancet Respir Med. 2022; 10(2): e20. doi:10.1016/S2213-2600(21)00561-0
32. Anthonisen N.R., Manfreda J., Warren C.P.W. et al. Antibiotic Therapy in Exacerbations of Chronic Obstructive Pulmonary Disease. Ann Intern Med. 1987; 106(2): 196-204. doi:10.7326/0003-4819-106-2-196
33. Sapelkin S.V., Kuznetsov M.R., Kalashnikov V.Yu. et al. National recommendations on diagnosis and treatment of lower limb arterial disease. [Electronic resource]. URL: https://www.angiolsurgery.org/library/recommendations/2019/recommendations_LLA_2019. pdf?ysclid=lhrk3lst1l961510992. (Date of the application: 01.03.2023) [in Russian]
34. Charlson M.E., Pompei P., Ales K.L. et al. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987; 40(5): 373-383. doi:10.1016/00219681(87)90171-8
35. Celli B.R., Cote C.G., Marin J.M. et al. The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N Engl J Med. 2004; 350(10): 1005-1012. doi:10.1056/NEJMoa021322
36. Tschopp J., Dumont P., Hayoz D. True prevalence of COPD and its association with peripheral arterial disease in the internal medicine ward of a tertiary care hospital. Swiss Med Wkly. 2017; 147: w14460. doi:10.4414/smw.2017.14460
37. Terzikhan N., Lahousse L., Verhamme K.M.C, et al. COPD is associated with an increased risk of peripheral artery disease and mortality. ERJ Open Res. 2018; 4(4): 00086-02018. doi:10.1183/23120541.000862018
38. Kotlyarov S. Analysis of differentially expressed genes and signaling pathways involved in atherosclerosis and chronic obstructive pulmonary disease. Biomol Concepts. 2022; 13(1): 34-54. doi:10.1515/bmc2022-0001
39. Shyam Prasad Shetty B., Chaya S.K., Kumar V.S. et al. Inflammatory Biomarkers Interleukin 1 Beta (IL-1β) and Tumour Necrosis Factor Alpha (TNF-α) Are Differentially Elevated in Tobacco Smoke Associated COPD and Biomass Smoke Associated COPD. Toxics. 2021; 9(4):72. doi:10.3390/toxics9040072
40. Dolinina L.Yu., Delieva A.N., Kaklyugin A.P. et al. Comparative analysis of the level of pro-inflammatory cytokines in patients with chronic obstructive pulmonary disease depending on the stage of the disease. The Russian Archives of Internal Medicine. 2012; (1): 64-67. [In Russian]. https://doi.org/10.20514/2226-6704-2012-0-1-64-67
41. Gessner C., Scheibe R., Wötzel M., et al. Exhaled breath condensate cytokine patterns in chronic obstructive pulmonary disease. Respir Med. 2005; 99(10): 1229-1240. doi:10.1016/j.rmed.2005.02.041
42. Luo X., Zhao C., Wang S., et al. TNF-α is a Novel Biomarker for Predicting Plaque Rupture in Patients with ST-Segment Elevation Myocardial Infarction. J Inflamm Res. 2022; 15: 1889-1898. doi:10.2147/JIR.S352509
43. Løkke A., Hilberg O., Lange P., et al. Exacerbations Predict Severe Cardiovascular Events in Patients with COPD and Stable Cardiovascular Disease-A Nationwide, Population-Based Cohort Study. Int J Chron Obstruct Pulmon Dis. 2023; 18: 419-429. doi:10.2147/COPD. S396790
44. Müllerová H., Marshall J., de Nigris E., et al. Association of COPD exacerbations and acute cardiovascular events: a systematic review and meta-analysis. Ther Adv Respir Dis. 2022; 16: 17534666221113648. doi:10.1177/17534666221113647
45. Løkke A., Hilberg O., Lange P., et al. Disease Trajectories and Impact of One Moderate Exacerbation in Gold B COPD Patients. Int J Chron Obstruct Pulmon Dis. 2022; 17: 569-578. doi:10.2147/COPD. S344669
46. Osei E.T., Brandsma C..A, Timens W. et al. Current perspectives on the role of interleukin-1 signalling in the pathogenesis of asthma and COPD. Eur Respir J. 2020; 55(2): 1900563. doi:10.1183/13993003.00563-2019
47. Ridker P.M.., Everett BM., Thuren T., et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med. 2017; 377(12): 1119-1131. doi:10.1056/NEJMoa1707914
48. Qamar A., Rader D.J. Effect of interleukin 1β inhibition in cardiovascular disease. Curr Opin Lipidol. 2012 Dec; 23(6): 548-53. doi: 10.1097/MOL.0b013e328359b0a6
49. Takahashi M., Ikeda U., Masuyama J.I. et al. Nitric oxide attenuates adhesion molecule expression in human endothelial cells. Cytokine. 1996; 8(11): 817-821. doi:10.1006/cyto.1996.010
50. O’Carroll S.J., Kho D.T., Wiltshire R. et al. Pro-inflammatory TNFα and IL-1β differentially regulate the inflammatory phenotype of brain microvascular endothelial cells. J Neuroinflammation. 2015; 12(1): 131. doi:10.1186/s12974-015-0346-0
51. Ma K., Huang F., Qiao R. et al. Pathogenesis of sarcopenia in chronic obstructive pulmonary disease. Front Physiol. 2022; 13: 850964. doi:10.3389/fphys.2022.850964
52. Tousoulis D., Oikonomou E., Economou E.K. et al. Inflammatory cytokines in atherosclerosis: current therapeutic approaches. Eur Heart J. 2016; 37(22): 1723-1732. doi:10.1093/eurheartj/ehv759
53. Maniscalco M., Paris D., Melck D.J. et al. Differential diagnosis between newly diagnosed asthma and COPD using exhaled breath condensate metabolomics: a pilot study. Eur Respir J. 2018; 51(3): 1701825. doi:10.1183/13993003.01825-2017
54. Maniscalco M., Fuschillo S., Paris D. et al. Clinical metabolomics of exhaled breath condensate in chronic respiratory diseases. Adv Clin Chem. 2019; 88: 121-149. doi:10.1016/bs.acc.2018.10.002
Review
For citations:
Kotlyarov S.N., Suchkov I.A., Uryasev O.M., Kotlyarova A.A. Analysis of Inflammation Biomarkers in Exhaled Breath Condensate in Patients with COPD Combined with Peripheral Arterial Disease. The Russian Archives of Internal Medicine. 2023;13(3):213-223. https://doi.org/10.20514/2226-6704-2023-13-3-213-223. EDN: PKZRCJ