Acute Cerebrocardial Syndrome: What’s New?
https://doi.org/10.20514/2226-6704-2025-15-6-405-414
EDN: YTTIFW
Abstract
Ischemic stroke and cardiovascular diseases have many common risk factors. Accordingly, patients with common triggers have high risk of developing brain-heart axis disorders. Since 2018, the stroke-heart syndrome has been distinguished in the cerebrocardial relationships structure. It includes any new heart disorders or worsening of existing heart diseases observed during the first 30 days after acute ischemic stroke, the peak of which occurs in the first 72 hours after the neurological catastrophe. The pathogenetic mechanisms of this syndrome are currently being actively studied. The main cause of heart damage against the background of stroke is the autonomic nervous system dysfunction, which is manifested in a decrease in parasympathetic and an increase in sympathetic activity, which is presented as a heart rate variability and baroreceptor reflex decrease. Stroke is also accompanied by the hypothalamic-pituitary-adrenal axis and the sympathoadrenal system activation, the systemic inflammatory response and hypercoagulation development. Recent data indicate that microRNA and intestinal microbiota play a role in cerebrocardial interactions. The review describes current concepts of this type of acute cerebrocardial syndrome manifestations, the classification possibilities and attempts at phenotyping, and also provides current epidemiological data. The diagnostic capabilities of routine laboratory and instrumental examinations are discussed, as well as promising methods that require additional research.
About the Authors
S. K. StolbovaRussian Federation
Sophia K. Stolbova — PhD, Assistant lecturer
Moscow
Competing Interests:
The authors declare no conflict of interests
E. V. Reznik
Russian Federation
Elena V. Reznik — MD, Head of the Department
Moscow
Competing Interests:
The authors declare no conflict of interests
G. N. Golukhov
Russian Federation
George N. Golukhov — MD, PhD, Professor, Corresponding Member of Russian Academy of Sciences, President
Moscow
Competing Interests:
The authors declare no conflict of interests
References
1. Healthcare in Russia. M., Rosstat. 2023. [Electronic resource] URL: http://ssl.rosstat.gov.ru/storage/mediabank/Zdravoohran-2023. pdf (date of the application: 21.08.2025) [In Russian]
2. The top 10 causes of death. World Health Organization. [Electronic resource]. URL: https://www.who.int/ru/news-room/fact-sheets/detail/the-top-10-causes-of-death (date of the application: 21.08.2025) [In Russian]
3. Chong B, Jayabaskaran J, Jauhari SM et al. Global burden of cardiovascular diseases: projections from 2025 to 2050. Eur J Prev Cardiol. 2024 Sep 13:zwae281. doi: 10.1093/eurjpc/zwae281.
4. Scott CA, Li L, Rothwell PM. Diverging Temporal Trends in Stroke Incidence in Younger vs Older People: A Systematic Review and Metaanalysis. JAMA Neurol. 2022 Oct 1;79(10):1036-1048. doi: 10.1001/jamaneurol.2022.1520.
5. Polyakov D.S., Fomin I.V., Belenkov Yu.N. etc. Chronic heart failure in the Russian Federation: what has changed over 20 years of followup? Results of the EPOCH-CHF study. Kardiologiia. 2021;61(4):4-14. https://doi.org/10.18087/cardio.2021.4.n1628 [In Russian]
6. Adelborg K, Szépligeti S, Sundbøll J et al. Risk of Stroke in Patients With Heart Failure: A Population-Based 30-Year Cohort Study. Stroke. 2017 May;48(5):1161-1168. doi: 10.1161/STROKEAHA.116.016022.
7. Tai YH, Chang CC, Yeh CC et al. Long-Term Risk of Stroke and Poststroke Outcomes in Patients with Heart Failure: Two Nationwide Studies. Clin Epidemiol. 2020 Nov 5;12:1235-1244. doi: 10.2147/CLEP.S261179.
8. Sartipy U, Dahlström U, Fu M et al. Atrial Fibrillation in Heart Failure With Preserved, Mid-Range, and Reduced Ejection Fraction. JACC Heart Fail. 2017 Aug;5(8):565-574. doi: 10.1016/j.jchf.2017.05.001.
9. Chen X, Savarese G, Dahlström U et al. Age-dependent differences in clinical phenotype and prognosis in heart failure with mid-range ejection compared with heart failure with reduced or preserved ejection fraction. Clin Res Cardiol. 2019 Dec;108(12):1394-1405. doi: 10.1007/s00392-019-01477-z.
10. Reznik E.V., Nikitin I.G. Cardiorenal syndrome in patients with heart failure as a stage of the cardiorenal continuum (part 2): prognosis, prevention and treatment. The Russian Archives of Internal Medicine. 2019;9(2):93-106. https://doi.org/10.20514/2226-6704-2019-9-2-93-106 [In Russian]
11. Alerić I, Katalinić D, Krpan M. Cardiopulmonary Interactions with Consecutive Pulmonary Abnormalities in Patients with Chronic Heart Failure. Acta Clin Croat. 2017 Sep;56(3):526-535. doi: 10.20471/acc.2017.56.03.20.
12. Stolbova S.K., Dragomiretskaya N.A., Beliaev I.G. etc. Clinical and laboratory associations of liver fibrosis indexes in patients with decompensated Chronic Heart Failure II-IV Functional Classes. Kardiologiia. 2020;60(5):90–99. https://doi.org/10.18087/cardio.2020.5.n920 [In Russian]
13. Eruslanova K.A., Mkhitaryan E.A., Izyumov A.D. etc. Cardio-cerebral syndrome in patients with chronic heart failure. Russian neurological journal. 2022;27(1):26-30 https://doi.org/10.30629/2658-7947-2022-27-1-26-30 [In Russian]
14. Scheitz JF, Sposato LA, Schulz-Menger J et al. Stroke-Heart Syndrome: Recent Advances and Challenges. J Am Heart Assoc. 2022 Sep 6; 11(17):e026528. doi: 10.1161/JAHA.122.026528.
15. Buckley BJR, Harrison SL, Hill A et al. Stroke-Heart Syndrome: Incidence and Clinical Outcomes of Cardiac Complications Following Stroke. Stroke. 2022 May;53(5):1759-1763. doi: 10.1161/STROKEAHA.121.037316.
16. Jung JM, Kim JG, Kim JB et al. Takotsubo-Like Myocardial Dysfunction in Ischemic Stroke: A Hospital-Based Registry and Systematic Literature Review. Stroke. 2016 Nov;47(11):2729-2736. doi: 10.1161/STROKEAHA.116.014304.
17. Byer E, Ashman R, Toth LA. Electrocardiograms with large, upright T waves and long Q-T intervals. Am Heart J. 1947 Jun;33(6):796-806. doi: 10.1016/0002-8703(47)90025-2.
18. Bogolepov N.K. Apoplectiform syndrome in myocardial infarction. 1949. Klin med.; 3: 36 [In Russian]
19. Bogolepov N.K. Cerebral crises and stroke. М 1971; 254-261 [In Russian]
20. Scheitz JF, Nolte CH, Doehner W et al. Stroke-heart syndrome: clinical presentation and underlying mechanisms. Lancet Neurol. 2018 Dec;17(12):1109-1120. doi: 10.1016/S1474-4422(18)30336-3.
21. Mihalovic M, Tousek P. Myocardial Injury after Stroke. J Clin Med. 2021 Dec 21;11(1):2. doi: 10.3390/jcm11010002.
22. Ishiguchi H, Huang B, El-Bouri WK et al.; VISTA Collaborators †. Mortality Risk in Patients With Cardiac Complications Following Ischemic Stroke: A Report From the Virtual International Stroke Trials Archive. J Am Heart Assoc. 2024 Dec 3;13(23):e036799. doi: 10.1161/JAHA.124.036799.
23. Bucci T, Choi SE, Tsang CT et al. Incident dementia in ischaemic stroke patients with early cardiac complications: A propensityscore matched cohort study. Eur Stroke J. 2025 Jun;10(2):541-551. doi: 10.1177/23969873241293573.
24. Sposato LA, Hilz MJ, Aspberg S et al. World Stroke Organisation Brain & Heart Task Force. Post-Stroke Cardiovascular Complications and Neurogenic Cardiac Injury: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020 Dec 8;76(23):2768-2785. doi: 10.1016/j.jacc.2020.10.009.
25. Chaulin AM, Karslyan LS, Duplyakov DV. Non-Coronarogenic Causes of Increased Cardiac Troponins in Clinical Practice. Journal of Clinical Practice. 2019;10(4):81–93. doi: 10.17816/clinpract16309 [In Russian]
26. Broersen LHA, Stengl H, Nolte CH et al. Association Between HighSensitivity Cardiac Troponin and Risk of Stroke in 96 702 Individuals: A Meta-Analysis. Stroke. 2020 Apr;51(4):1085-1093. doi: 10.1161/STROKEAHA.119.028323.
27. Krause T, Werner K, Fiebach JB et al. Stroke in right dorsal anterior insular cortex Is related to myocardial injury. Ann Neurol. 2017 Apr;81(4):502-511. doi: 10.1002/ana.24906.
28. Scheitz JF, Lim J, Broersen LHA et al. High-Sensitivity Cardiac Troponin T and Recurrent Vascular Events After First Ischemic Stroke. J Am Heart Assoc. 2021 May 18;10(10):e018326. doi: 10.1161/JAHA.120.018326.
29. von Rennenberg R, Herm J, Krause T et al. Elevation of cardiac biomarkers in stroke is associated with pathological findings on cardiac MRI-results of the HEart and BRain interfaces in Acute Stroke study. Int J Stroke. 2023 Feb;18(2):180-186. doi: 10.1177/17474930221095698.
30. Nolte CH, von Rennenberg R, Litmeier S et al. Type 1 Myocardial Infarction in Patients With Acute Ischemic Stroke. JAMA Neurol. 2024 Jul 1;81(7):703-711. doi: 10.1001/jamaneurol.2024.1552.
31. Scheitz JF, Mochmann HC, Erdur H et al. Prognostic relevance of cardiac troponin T levels and their dynamic changes measured with a high-sensitivity assay in acute ischaemic stroke: analyses from the TRELAS cohort. Int J Cardiol. 2014 Dec 20;177(3):886-93. doi: 10.1016/j.ijcard.2014.10.036.
32. Prandin G, Caruso P, Furlanis G et al. Troponin levels in transient ischemic attack and ischemic stroke: does “transient” in your brain mean “better” for your heart? J Stroke Cerebrovasc Dis. 2024 Sep;33(9):107844. doi: 10.1016/j.jstrokecerebrovasdis.2024.107844.
33. Powers WJ, Rabinstein AA, Ackerson T, et al. Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2019;50(12):e344-e418. doi: 10.1161/STR.0000000000000211.
34. Boulanger M, Béjot Y, Rothwell PM et al. Long-Term Risk of Myocardial Infarction Compared to Recurrent Stroke After Transient Ischemic Attack and Ischemic Stroke: Systematic Review and Meta-Analysis. J Am Heart Assoc. 2018 Jan 18;7(2):e007267. doi: 10.1161/JAHA.117.007267.
35. Sposato LA, Lam M, Allen B et al. First-ever ischemic stroke and increased risk of incident heart disease in older adults. Neurology. 2020 Apr 14;94(15):e1559-e1570. doi: 10.1212/WNL.0000000000009234.
36. Mitrică M, Lorusso L, Badea AA et al. The Hidden Heart: Exploring Cardiac Damage Post-Stroke: A Narrative Review. Medicina (Kaunas). 2024 Oct 16;60(10):1699. doi: 10.3390/medicina60101699.
37. Veltkamp R, Uhlmann S, Marinescu M et al. Experimental ischaemic stroke induces transient cardiac atrophy and dysfunction. J Cachexia Sarcopenia Muscle. 2019 Feb;10(1):54-62. doi: 10.1002/jcsm.12335.
38. Vornholz L, Nienhaus F, Gliem M et al. Acute Heart Failure After Reperfused Ischemic Stroke: Association With Systemic and Cardiac Inflammatory Responses. Front Physiol. 2021 Dec 21;12:782760. doi: 10.3389/fphys.2021.782760.
39. Bieber M, Werner RA, Tanai E et al. Stroke-induced chronic systolic dysfunction driven by sympathetic overactivity. Ann Neurol. 2017 Nov;82(5):729-743. doi: 10.1002/ana.25073.
40. Heuschmann PU, Montellano FA, Ungethüm K et al. Prevalence and determinants of systolic and diastolic cardiac dysfunction and heart failure in acute ischemic stroke patients: The SICFAIL study. ESC Heart Fail. 2021 Apr;8(2):1117-1129. doi: 10.1002/ehf2.13145.
41. Hassan MS, Mire Waberi M, Osman Sidow N et al. Analysis of Echocardiographic Findings of Patients with Acute Ischemic Stroke Admitted to a Tertiary Care Hospital in Mogadishu, Somalia. Int J Gen Med. 2023 Jul 7;16:2887-2895. doi: 10.2147/IJGM.S414014.
42. Park HK, Kim BJ, Yoon CH et al. Left Ventricular Diastolic Dysfunction in Ischemic Stroke: Functional and Vascular Outcomes. J Stroke. 2016 May;18(2):195-202. doi: 10.5853/jos.2015.01697.
43. Xu C, Zheng A, He T et al. Brain-Heart Axis and Biomarkers of Cardiac Damage and Dysfunction after Stroke: A Systematic Review and Meta-Analysis. Int J Mol Sci. 2020 Mar 28;21(7):2347. doi: 10.3390/ijms21072347.
44. Hermanns N, Wroblewski V, Bascuñana P et al. Molecular imaging of the brain-heart axis provides insights into cardiac dysfunction after cerebral ischemia. Basic Res Cardiol. 2022 Oct 24;117(1):52. doi: 10.1007/s00395-022-00961-4.
45. Dieplinger B, Bocksrucker C, Egger M et al. Prognostic Value of Inflammatory and Cardiovascular Biomarkers for Prediction of 90- Day All-Cause Mortality after Acute Ischemic Stroke-Results from the Linz Stroke Unit Study. Clin Chem. 2017 Jun;63(6):1101-1109. doi: 10.1373/clinchem.2016.269969.
46. Patel U, Desai R, Faisaluddin M et al. Prevalence and impact of takotsubo syndrome in hospitalizations for acute ischemic stroke. Proc (Bayl Univ Med Cent). 2021 Nov 9;35(2):156-161. doi: 10.1080/08998280.2021.1995932.
47. Jung JM, Kim JG, Kim JB et al.Takotsubo-Like Myocardial Dysfunction in Ischemic Stroke: A Hospital-Based Registry and Systematic Literature Review. Stroke. 2016 Nov;47(11):2729-2736. doi: 10.1161/STROKEAHA.116.014304.
48. Ghadri JR, Kato K, Cammann VL et al. Long-Term Prognosis of Patients With Takotsubo Syndrome. J Am Coll Cardiol. 2018 Aug 21;72(8):874-882. doi: 10.1016/j.jacc.2018.06.016.
49. Pelliccia F, Kaski JC, Crea F et al. Pathophysiology of Takotsubo Syndrome. Circulation. 2017 Jun 13;135(24):2426-2441. doi: 10.1161/CIRCULATIONAHA.116.027121.
50. Wittstein IS, Thiemann DR, Lima JA et al. Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med. 2005 Feb 10;352(6):539-48. doi: 10.1056/NEJMoa043046. PMID: 15703419.
51. Yoshimura S, Toyoda K, Ohara T et al. Takotsubo cardiomyopathy in acute ischemic stroke. Ann Neurol. 2008 Nov;64(5):547-54. doi: 10.1002/ana.21459.
52. Zeng Z, Wang Q, Yu Y et al. Assessing electrocardiogram changes after ischemic stroke with artificial intelligence. PLoS One. 2022 Dec 27;17(12):e0279706. doi: 10.1371/journal.pone.0279706.
53. Daniele O, Caravaglios G, Fierro B et al. Stroke and cardiac arrhythmias. J Stroke Cerebrovasc Dis. 2002 Jan-Feb;11(1):28-33. doi: 10.1053/jscd.2002.123972.
54. Ishiguchi H, Huang B, El-Bouri WK et al. VISTA Collaborators †. Mortality Risk in Patients With Cardiac Complications Following Ischemic Stroke: A Report From the Virtual International Stroke Trials Archive. J Am Heart Assoc. 2024 Dec 3;13(23):e036799. doi: 10.1161/JAHA.124.036799.
55. Hjalmarsson C, Bokemark L, Fredriksson S et al. Can prolonged QTc and cTNT level predict the acute and long-term prognosis of stroke? Int J Cardiol. 2012 Mar 22;155(3):414-7. doi: 10.1016/j.ijcard.2010.10.042.
56. Christensen H, Fogh Christensen A, Boysen G. Abnormalities on ECG and telemetry predict stroke outcome at 3 months. J Neurol Sci. 2005 Jul 15;234(1-2):99-103. doi: 10.1016/j.jns.2005.03.039.
57. Kallmünzer B, Breuer L, Kahl N et al. Serious cardiac arrhythmias after stroke: incidence, time course, and predictors--a systematic, prospective analysis. Stroke. 2012 Nov;43(11):2892-7. doi: 10.1161/STROKEAHA.112.664318.
58. Garnier L, Duloquin G, Meloux A et al. Multimodal Approach for the Prediction of Atrial Fibrillation Detected After Stroke: SAFAS Study. Front Cardiovasc Med. 2022 Jul 13;9:949213. doi: 10.3389/fcvm.2022.949213.
59. Cerasuolo JO, Cipriano LE, Sposato LA. The complexity of atrial fibrillation newly diagnosed after ischemic stroke and transient ischemic attack: advances and uncertainties. Curr Opin Neurol. 2017 Feb;30(1):28-37. doi: 10.1097/WCO.0000000000000410.
60. Sposato LA, Cerasuolo JO, Cipriano LE et al. PARADISE Study Group. Atrial fibrillation detected after stroke is related to a low risk of ischemic stroke recurrence. Neurology. 2018 Mar 13;90(11):e924-e931. doi: 10.1212/WNL.0000000000005126.
61. Fridman S, Jimenez-Ruiz A, Vargas-Gonzalez JC et al. Differences between Atrial Fibrillation Detected before and after Stroke and TIA: A Systematic Review and Meta-Analysis. Cerebrovasc Dis. 2022;51(2):152-157. doi: 10.1159/000520101.
62. Min J, Young G, Umar A et al. Neurogenic cardiac outcome in patients after acute ischemic stroke: The brain and heart connection. J Stroke Cerebrovasc Dis. 2022 Dec;31(12):106859. doi: 10.1016/j.jstrokecerebrovasdis.2022.106859.
63. Sposato LA, Hilz MJ, Aspberg S et al.; World Stroke Organisation Brain & Heart Task Force. Post-Stroke Cardiovascular Complications and Neurogenic Cardiac Injury: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020 Dec 8;76(23):2768-2785. doi: 10.1016/j.jacc.2020.10.009.
64. Fan X, Cao J, Li M et al. Stroke Related Brain-Heart Crosstalk: Pathophysiology, Clinical Implications, and Underlying Mechanisms. Adv Sci (Weinh). 2024 Apr;11(14):e2307698. doi: 10.1002/advs.202307698.
65. Poh MQW, Tham CH, Chee JDMS et al. Predicting Atrial Fibrillation after Ischemic Stroke: Clinical, Genetics, and Electrocardiogram Modelling. Cerebrovasc Dis Extra. 2023;13(1):9-17. doi: 10.1159/000528516.
66. Pang M, Li Z, Sun L et al. A nomogram for predicting atrial fibrillation detected after acute ischemic stroke. Front Neurol. 2022 Oct 14;13:1005885. doi: 10.3389/fneur.2022.1005885.
67. Deng G, Chu YH, Xiao J et al. Risk Factors, Pathophysiologic Mechanisms, and Potential Treatment Strategies of Futile Recanalization after Endovascular Therapy in Acute Ischemic Stroke. Aging Dis. 2023 Dec 1;14(6):2096-2112. doi: 10.14336/AD.2023.0321-1.
68. Wang W, Wang M, Ma C et al. Transcutaneous auricular vagus nerve stimulation attenuates stroke-heart syndrome: The role of parasympathetic activity. Exp Neurol. 2025 Mar;385:115094. doi: 10.1016/j.expneurol.2024.115094.
69. Ghadri JR, Wittstein IS, Prasad A et al. International Expert Consensus Document on Takotsubo Syndrome (Part I): Clinical Characteristics, Diagnostic Criteria, and Pathophysiology. Eur Heart J. 2018 Jun 7;39(22):2032-2046. doi: 10.1093/eurheartj/ehy076.
70. Saini G, Kaur K, Bhatia L et al. Single Serum Cortisol Value as a Prognostic Marker in Acute Ischemic Stroke. Cureus. 2023 Jun 24; 15(6):e40887. doi: 10.7759/cureus.40887.
71. Connors JM, Levy JH. Thromboinflammation and the hypercoagulability of COVID-19. J Thromb Haemost. 2020 Jul;18(7):1559-1561. doi: 10.1111/jth.14849.
72. Dhanesha N, Patel RB, Doddapattar P et al. PKM2 promotes neutrophil activation and cerebral thromboinflammation: therapeutic implications for ischemic stroke. Blood. 2022 Feb 24;139(8):1234-1245. doi: 10.1182/blood.2021012322.
73. Kim M, Kim SD, Kim KI et al. Dynamics of T Lymphocyte between the Periphery and the Brain from the Acute to the Chronic Phase Following Ischemic Stroke in Mice. Exp Neurobiol. 2021 Apr 30; 30(2):155-169. doi: 10.5607/en20062.
74. Yan T, Chen Z, Chopp M et al. Inflammatory responses mediate brain-heart interaction after ischemic stroke in adult mice. J Cereb Blood Flow Metab. 2020 Jun;40(6):1213-1229. doi: 10.1177/0271678X18813317.
75. Wang M, Peng Y. Advances in brain-heart syndrome: Attention to cardiac complications after ischemic stroke. Front Mol Neurosci. 2022 Nov 24;15:1053478. doi: 10.3389/fnmol.2022.1053478.
76. Fest J, Ruiter R, Mulder M et al. The systemic immune-inflammation index is associated with an increased risk of incident cancer-A population-based cohort study. Int J Cancer. 2020 Feb 1;146(3):692-698. doi: 10.1002/ijc.32303.
77. Hao X, Zhu M, Sun Z et al. Systemic immune-inflammation index is associated with cardiac complications following acute ischemic stroke: A retrospective single-center study. Clin Neurol Neurosurg. 2024 Jun;241:108285. doi: 10.1016/j.clineuro.2024.108285.
78. Weng Y, Zeng T, Huang H et al. Systemic Immune-Inflammation Index Predicts 3-Month Functional Outcome in Acute Ischemic Stroke Patients Treated with Intravenous Thrombolysis. Clin Interv Aging. 2021 May 20;16:877-886. doi: 10.2147/CIA.S311047.
79. Chen J, Cui C, Yang X et al. MiR-126 Affects Brain-Heart Interaction after Cerebral Ischemic Stroke. Transl Stroke Res. 2017 Aug;8(4):374-385. doi: 10.1007/s12975-017-0520-z.
80. Wang M, Peng Y. Advances in brain-heart syndrome: Attention to cardiac complications after ischemic stroke. Front Mol Neurosci. 2022 Nov 24;15:1053478. doi: 10.3389/fnmol.2022.1053478.
81. Wang S, Aurora AB, Johnson BA et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell. 2008 Aug;15(2):261-71. doi: 10.1016/j.devcel.2008.07.002.
82. Ishiguchi H, Huang B, El-Bouri WK et al. Stroke-heart syndrome and early mortality in patients with acute ischaemic stroke using hierarchical cluster analysis: An individual patient data pooled analysis from the VISTA database. Eur Stroke J. 2025 Jun;10(2):478-486. doi: 10.1 177/23969873241290440.
Review
For citations:
Stolbova S.K., Reznik E.V., Golukhov G.N. Acute Cerebrocardial Syndrome: What’s New? The Russian Archives of Internal Medicine. 2025;15(6):405-414. (In Russ.) https://doi.org/10.20514/2226-6704-2025-15-6-405-414. EDN: YTTIFW
JATS XML




































