Preview

Архивъ внутренней медицины

Расширенный поиск

СЕРДЕЧНО-СОСУДИСТЫЕ И МЕТАБОЛИЧЕСКИЕ НАРУШЕНИЯ У ПАЦИЕНТОВ С ОБСТРУКТИВНЫМ АПНОЭ СНА

https://doi.org/10.20514/2226-6704-2018-8-1-12-21

Полный текст:

Аннотация

С момента, когда впервые была выявлена обструктивная природа апноэ сна, в многолетних исследованиях получено немало новой информации об этом заболевании. Именно  обструктивное апноэ сна (ОАС) признается независимым предиктором развития нарушения  толерантности к глюкозе (инсулин резистентность (ИР), гипергликемия натощак), сахарного  диабета 2 типа (CД2), резистентной артериальной гипертензии, преждевременной сердечно- сосудистой смерти. Проблема выявления и лечения пациентов с ОАС не теряет своей  актуальности. В реальной клинической практике существует необходимость комплексного  подхода к диагностике и терапии коморбидных больных ОАС с метаболическими  расстройствами и сердечно-сосудистыми заболеваниями.

Целью настоящего обзора является оценка клинико-патогенетических особенностей метаболических нарушений, углеводного  обмена, основного обмена, пищевого поведения, колебания веса тела у пациентов с  синдромом обструктивного апноэ сна.

Методы. В нашей работе мы использовали  ретроспективный анализ опубликованных данных клинических исследований отечественных и зарубежных авторов за последние 20 лет. В обзор включались исследования, имеющие адекватный дизайн с позиций «добросовестной клинической практики» (GCP) и доказательной медицины.

Заключение. Согласно современной трактовке обструктивное апноэ сна рассматривается  как самостоятельное заболевание, имеющее свои патогенетические механизмы,  клинические и функциональные проявления. Выделяют несколько основных причин  влияния ОАС на метаболический компонент и работу сердечно-сосудистой системы. Среди них лидируют интермиттирующая гипоксемия, эндотелиальная дисфункция, колебания внутригрудного давления, повышение активности симпатической нервной системы, нарушение структуры сна. ОАС рассматривается как болезнь, способная инвалидизировать пациентов трудоспособного возраста, резко менять качество жизни, приводить к ранней смертности по причине сердечно-сосудистых катастроф. Своевременное выявление клинических симптомов ОАС и стратегия раннего назначения СРАР-терапии существенно улучшают качество лечения и прогноз коморбидных больных.

Об авторах

М. В. Горбунова
МГМСУ им. А.И. Евдокимова
Россия
Кафедра фтизиатрии и пульмонологии лечебного факультета


С. Л. Бабак
МГМСУ им. А.И. Евдокимова
Россия
Кафедра фтизиатрии и пульмонологии лечебного факультета


А. Г. Малявин
МГМСУ им. А.И. Евдокимова
Россия
Кафедра фтизиатрии и пульмонологии лечебного факультета


Список литературы

1. Tasali, Leproult R., Ehrmann D.A., Van Cauter E. Slow-wave sleep and the risk of type 2 diabetes in humans. Proceedings of the National Academy of Sciences of the United States of America. 2008; 105 (3): 1044–1049. PMCID: PMC2242689, DOI: 10.1073/pnas.0706446105.

2. Jennum P., Riha R.L. Epidemiology of sleep apnoea/hypopnoea syndrome and sleep- disordered breathing. Eur. Respir. J. 2009; 33: 907-914. PMID: 19336593, DOI: 10.1183/09031936.00180108.

3. Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. The Report of an American Academy of Sleep Medicine Task Force. Sleep. 1999 Aug 1; 22(5): 667-89. PMID: 10450601.

4. Butt M., Dwivedi G., Khair O., Lip G.Y. Obstructive sleep apnea and cardiovascular disease. Int. J. Cardiol. 2010; 139: 7-16. PMID: 19505734, DOI: 10.1016/j.ijcard.2009.05.021.

5. Ryan S., Taylor C.T., McNicholas W.T. Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation. 2005; 112 (17): 2660-7. PMID: 16246965, DOI: 10.1161/ CIRCULATIONAHA.105.556746.

6. Drager L.F., Togeiro S.M., Polotsky V.Y., Lorenzi-Filho G. Obstructive sleep apnea: a cardiometabolic risk in obesity and the metabolic syndrome. J. Am. Coll. Cardiol. 2013 Aug 13; 62(7): 569-76. PMCID: PMC4461232, DOI: 10.1016/j.jacc.2013.05.045.

7. Fava C., Montagnana M., Favaloro E.J., Guidi G.C., Lippi G. Obstructive sleep apnea syndrome and cardiovascular diseases. Semin. Thromb. Hemost. 2011 Apr; 37(3): 280-97. PMID: 21455862, DOI: 10.1055/s-0031-1273092.

8. Ryan S., Taylor C.T., McNicholas W.T. Systemic inflammation: a key factor in the pathogenesis of cardiovascular complications in obstructive sleep apnoea syndrome? Thorax 2009 Jul; 64(7): 631-6. PMID: 19561283, DOI: 10.1136/thx.2008.105577.

9. Lavie L. Obstructive sleep apnoea syndrome — an oxidative stress disorder. Sleep Med Rev. 2003 Feb; 7(1): 35-51. PMID: 12586529.

10. O’Driscoll D.M1., Horne R.S., Davey M.J., Hope S.A., Anderson V., Trinder J., Walker A.M., Nixon G.M. Increased sympathetic activity in children with obstructive sleep apnea: cardiovascular implications. Sleep Med. 2011 May; 12(5): 483-8. PMID: 21521626, DOI: 10.1016/j.sleep.2010.09.015.

11. Valencia-Flores M1., Orea A., Castaño V.A., Resendiz M., Rosales M., Rebollar V., Santiago V., Gallegos J., Campos R.M., González J., Oseguera J., García-Ramos G., Bliwise D.L. Prevalence of sleep apnea and electrocardiographic disturbances in morbidly obese patients. Obes Res. 2000 May; 8(3): 262-9. PMID: 10832770, DOI: 10.1038/oby.2000.31.

12. Resta O., Foschino-Barbaro M.P., Legari G., Talamo S., Bonfitto P., Palumbo A., Minenna A., Giorgino R., De Pergola G. Sleep-related breathing disorders, loud snoring and excessive daytime sleepiness in obese subjects. Int. J. Obes. Relat. Metab. Disord. 2001 May; 25 (5): 669-75. PMID: 11360149, DOI: 10.1038/sj.ijo.0801603.

13. Fan J.F., Fan W.W., Gu Y.H., Zhang Y.K., Huang W.G., Hou Y., Lv W., Zhou L., Li R. The relationship between abdominal fat volume and obstructive sleep apnea hypopnea syndrome in obesity people. Zhonghua Zheng Xing Wai Ke Za Zhi. 2013 Jan; 29 (1): 37-9. PMID: 23600129.

14. Дедов И.И., Мельниченко Г.А., Бутрова С.А. Жировая ткань как эндокринный орган. Ожирение и метаболизм 2006; 1(6): 6-13. ISSN: 2071-8713, eISSN: 2306-5524. Dedov I.I, Mel’nichenko G.A, Butrova S.A. Adipose tissue as an endocrine organ. Obesity and Metabolism 2006; 1 (6): 6-13. ISSN: 2071-8713, eISSN: 2306-5524 [in Russian].

15. Booth A., Magnuson A., Fouts J., Foster M.T. Adipose tissue: an endocrine organ playing a role in metabolic regulation. Horm. Mol. Biol. Clin. Investig. 2016 Apr 1; 26(1): 25-42. PMID: 26910750, DOI: 10.1515/hmbci-2015-0073.

16. Nakamura K., Fuster J.J., Walsh K. Adipokines: a link between obesity and cardiovascular disease. J. Cardiol. 2014 Apr; 63(4): 250-9. PMCID: PMC3989503, DOI: 10.1016/j.jjcc.2013.11.006.

17. Van de Voorde J., Pauwels B., Boydens C., Decaluwé K. Adipocytokines in relation to cardiovascular disease. Metabolism. 2013 Nov; 62(11): 1513-21. PMID: 23866981, DOI: 10.1016/j.metabol.2013.06.004.

18. Van de Voorde J., Boydens C., Pauwels B., Decaluwé K. Perivascular adipose tissue, inflammation and vascular dysfunction in obesity. Curr. Vasc. Pharmacol. 2014 May; 12(3): 403-11. PMID: 24846230.

19. Ozen G., Daci A., Norel X., Topal G. Human perivascular adipose tissue dysfunction as a cause of vascular disease: Focus on vascular tone and wall remodeling. Eur. J. Pharmacol. 2015 Nov 5; 766: 16-24. PMID: 26424111, DOI: 10.1016/j.ejphar.2015.09.012.

20. Beltowski J. Leptin and atherosclerosis. Atherosclerosis. 2006 Nov; 189(1): 47-60. PMID: 16580676, DOI: 10.1016/j. atherosclerosis.2006.03.003.

21. Wang H., Luo W., Eitzman D.T. Leptin in thrombosis and atherosclerosis. Curr. Pharm. Des. 2014; 20(4): 641-5. PMID: 23688009.

22. Smitka K., Marešová D. Adipose Tissue as an Endocrine Organ: An Update on Pro- inflammatory and Anti-inflammatory Microenvironment. Prague Med. Rep. 2015; 116(2): 87- 111. PMID: 26093665, DOI: 10.14712/23362936. 2015.49.

23. Kuryszko J., Sławuta P., Sapikowski G. Secretory function of adipose tissue. Pol. J. Vet. Sci. 2016; 19(2): 441-6. PMID: 27487522, DOI: 10.1515/pjvs-2016-0056.

24. Li Z.Y., Wang P., Miao C.Y. Adipokines in inflammation, insulin resistance and cardiovascular disease. Clin. Exp. Pharmacol. Physiol. 2011 Dec; 38(12): 888-96. PMID: 21910745, DOI: 10.1111/j.1440-1681.2011.05602.x.

25. de Jonge L., Zhao X., Mattingly M.S., Zuber S.M., Piaggi P., Csako G., Cizza G.; NIDDK Sleep Extension Study Group. Poor sleep quality and sleep apnea are associated with higher resting energy expenditure in obese individuals with short sleep duration. J. Clin. Endocrinol. Metab. 2012 Aug; 97(8): 2881-9. PMCID: PMC3410277, DOI: 10.1210/jc.2011-2858.

26. Cizza G., Piaggi P., Lucassen E.A., de Jonge L., Walter M., Mattingly M.S., Kalish H, Csako G, Rother KI; Sleep Extension Study Group. Obstructive sleep apnea is a predictor of abnormal glucose metabolism in chronically sleep deprived obese adults. PLoS One. 2013 May 29; 8(5): e65400. PMCID: PMC3667085, DOI: 10.1371/journal.pone.0065400.

27. Brochu-Gaudreau, K., Rehfeldt, C., Blouin, R., Bordignon, V., Murphy, B. D., Palin, M. F. (2010) Adiponectin action from head to toe. Endocrine. 2010 Feb; 37(1): 11-32. PMID: 20963555, DOI: 10.1007/s12020-009-9278-8.

28. Carnagarin, R., Dharmarajan, A. M., Dass, C. R. (2015) PEDFinduced alteration of metabolism leading to insulin resistance. Mol. Cell. Endocrinol. 2015 Feb 5; 401:98-104. PMID: 25462587, DOI: 10.1016/j.mce.2014.11.006.

29. Wang C., Ha X., Li W., Xu P., Gu Y., Wang T., Wang Y., Xie J., Zhang J. Correlation of TLR4 and KLF7 in Inflammation Induced by Obesity. Inflammation. 2017 Feb; 40(1): 42-51. PMID: 27714571, DOI: 10.1007/s10753-016-0450-z.

30. Yeo G., Heisler L. Unraveling the brain regulation of appetite: lessons from genetics. Nat .Neurosci. 2012 Oct; 15(10): 1343-9. PMID: 23007189, DOI: 10.1038/nn.3211.

31. Zegers D., Van Hul W., Van Gaal L.F., Beckers S. Monogenic and complex forms of obesity: insights from genetics reveal the leptinmelanocortin signaling pathway as a common player. Crit. Rev. Eukaryot. Gene Expr. 2012; 22(4): 325-43. PMID: 23272802.

32. Fry M., Hoyda T., Ferguson A. Making sense of it: roles of the sensory circumventricular organs in feeding and regulation of energy homeostasis. Exp. Biol. Med. (Maywood). 2007 Jan; 232(1): 14-26. PMID: 17202582.

33. Hoyda T.D., Smith P.M., Ferguson A.V. Gastrointestinal hormone actions in the central regulation of energy metabolism: potential sensory roles for the circumventricular organs. Int. J. Obes. (Lond). 2009 Apr; 33 Suppl 1:S16-21. PMID: 19363501, DOI: 10.1038/ijo.2009.11.

34. Дедов И.И., Трошина Е.А., Мазурина Н.В. Роль нейротрансмиттеров в регуляции энергетического гомеостаза и возможности медикаментозной коррекции его нарушений при ожирении. Ожирение и метаболизм 2016; 13(1): 69-15. DOI: 10.14341/omet201619-15. Dedov I.I, Troshina E.A, Mazurina N.V. The role of neurotransmitters in regulation of energy homeostasis and possibility of drug correction of its disturbances in obesity. Obesity and Metabolism 2016; 13(1): 69-15 DOI: 10.14341/omet201619-15 [in Russian].

35. Guo J., Simmons W.K., Herscovitch P., Martin A., Hall K.D. Striatal dopamine D2-like receptor correlation patterns with human obesity and opportunistic eating behavior. Mol Psychiatry. 2014 Oct; 19(10): 1078-84. PMCID: PMC4189966, DOI: 10.1038/mp.2014.102.

36. van Strien T., Snoek H.M., van der Zwaluw C.S., Engels R.C. Parental control and the dopamine D2 receptor gene (DRD2) interaction on emotional eating in adolescence. Appetite. 2010 Apr; 54(2): 255-61. PMID: 19925838, DOI: 10.1016/j.appet.2009.11.006.

37. Lam D.D., Garfield A.S., Marston O.J., Shaw J., Heisler L.K. Brain serotonin system in the coordination of food intake and body weight. Pharmacol. Biochem. Behav. 2010 Nov; 97(1): 84-91. PMID: 20837046, DOI: 10.1016/j.pbb.2010.09.003.

38. Garfield A.S., Burke L.K., Shaw J., Evans M.L., Heisler L.K. Distribution of cells responsive to 5-HT₆ receptor antagonist-induced hypophagia. Behav Brain Res. 2014 Jun 1; 266:201-6. PMCID: PMC4003350, DOI: 10.1016/j.bbr.2014.02.018.

39. Best J., Nijhout H.F., Reed M. Serotonin synthesis, release and reuptake in terminals: a mathematical model. Theor. Biol. Med. Model. 2010 Aug 19; 7: 34. PMCID: PMC2942809, DOI: 10.1186/1742-4682-7-34.

40. Clark A., Mach N. Exercise-induced stress behavior, gut-microbiotabrain axis and diet: a systematic review for athletes. J. Int. Soc. Sports Nutr. 2016 Nov 24; 13:43. PMCID: PMC5121944, DOI: 10.1186/s12970-016-0155-6.

41. Bulcun E., Ekici M., Ekici A. Disorders of glucose metabolism and insulin resistance in patients with obstructive sleep apnoea syndrome. Int. J. Clin. Pract. 2012 Jan; 66(1): 91-97. PMID: 22171909, DOI: 10.1111/j.1742-1241.2011.02795.x.

42. Punjabi N.M., Shahar E., Redline S., Gottlieb D.J., Givelber R., Resnick H.E. Sleep Heart Health Study Investigators. Sleep-disordered breathing, glucose intolerance, and insulin resistance: the Sleep Heart Health Study. Am. J. Epidemiol. 2004 Sep 15; 160(6): 521-30. PMID: 15353412, DOI: 10.1093/aje/kwh261.

43. Ip M.S., Lam B., Ng M.M., Lam W.K., Tsang K.W., Lam K.S. Obstructive sleep apnea is independently associated with insulin resistance. Am. J. Respir. Crit. Care Med. 2002 Mar 1; 165(5): 670-6. PMID: 11874812, DOI: 10.1164/ajrccm. 165.5.2103001.

44. Araújo Lda S., Fernandes J.F., Klein M.R., Sanjuliani A.F. Obstructive sleep apnea is independently associated with inflammation and insulin resistance, but not with blood pressure, plasma catecholamines, and endothelial function in obese subjects. Nutrition. 2015 Nov-Dec; 31(11-12): 1351-7. PMID: 26429654, DOI: 10.1016/j.nut.2015.05.017.

45. Elmasry A., Janson C., Lindberg E., Gislason T., Tageldin M.A., Boman G. The role of habitual snoring and obesity in the development of diabetes: a 10-year follow-up study in a male population. J. Intern. Med. 2000 Jul; 248(1): 13-20. PMID: 10947876.

46. Al-Delaimy W.K., Manson J.E., Willett W.C., Stampfer M.J., Hu F.B. Snoring as a risk factor for type II diabetes mellitus: a prospective study. Am. J. Epidemiol. 2002 Mar 1; 155(5): 387- 93. PMID: 11867347.

47. Stamatakis K.A., Punjabi N.M. Effects of sleep fragmentation on glucose metabolism in normal subjects Chest. 2010 Jan; 137(1): 95-101. PMCID: PMC2803120, DOI: 10.1378/chest.09-0791.

48. Reutrakul S., Van Cauter E. Interactions between sleep, circadian function, and glucose metabolism: implications for risk and severity of diabetes. Ann. N. Y. Acad Sci. 2014 Apr; 1311: 151-73. PMID: 24628249, DOI: 10.1111/nyas.12355.

49. Patel S.., White D.P., Malhotra A., Stanchina M.L., Ayas N.T. Continuous positive airway pressure therapy for treating sleepiness in a diverse population with obstructive sleep apnea: results of a meta-analysis. Arch. Intern. Med. 2003 Mar 10; 163(5): 565-71. PMID: 12622603.

50. Coughlin S.R., Mawdsley L., Mugarza J.A., Wilding J.P., Calverley PM. Cardiovascular and metabolic effects of CPAP in obese males with OSA. Eur. Respir. J. 2007 Apr; 29(4): 720-7. PMID: 17251237, DOI: 10.1183/09031936. 00043306.

51. Lin M.T., Lin H.H., Lee P.L., Weng P.H., Lee C.C., Lai T.C., Liu W., Chen C.L. Beneficial effect of continuous positive airway pressure on lipid profiles in obstructive sleep apnea: a meta- analysis. Sleep Breath. 2015 Sep; 19(3): 809-17. PMCID: PMC4559086, DOI: 10.1007/s11325-014-1082-x.


Для цитирования:


Горбунова М.В., Бабак С.Л., Малявин А.Г. СЕРДЕЧНО-СОСУДИСТЫЕ И МЕТАБОЛИЧЕСКИЕ НАРУШЕНИЯ У ПАЦИЕНТОВ С ОБСТРУКТИВНЫМ АПНОЭ СНА. Архивъ внутренней медицины. 2018;8(1):12-21. https://doi.org/10.20514/2226-6704-2018-8-1-12-21

For citation:


Gorbunova M.V., Babak S.L., Maliavin A.G. CARDIOVASCULAR AND METABOLIC IMPAIRMENT IN PATIENTS WITH OBSTRUCTIVE SLEEP APNEA. The Russian Archives of Internal Medicine. 2018;8(1):12-21. (In Russ.) https://doi.org/10.20514/2226-6704-2018-8-1-12-21

Просмотров: 143


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2226-6704 (Print)
ISSN 2411-6564 (Online)