Preview

Архивъ внутренней медицины

Расширенный поиск

Фактор роста соединительной ткани в норме и патологии

https://doi.org/10.20514/2226-6704-2020-10-4-254-261

Полный текст:

Аннотация

В обзоре отражены современные представления о роли фактора роста соединител ьной ткани при различных физиологических и патологических процессах. Фактор роста соединительной ткани регулирует разнообразные клеточные функции, в том числе, пролиферацию, миграцию, адгезию, дифференцировку и синтез белков внеклеточного матрикса в клетках различных типов, а также участвует в более сложных биологических процессах ангиогенеза, хондрогенеза, остеогенеза, заживления ран, фиброза и онкогенеза. Повышенная экспрессия фактора роста соединительной ткани наблюдается при различных сердечно-сосудистых и онкологических заб олеваниях. В обзоре обсуждается также потенциальная роль этого фактора роста в регуляции процессов клеточного старения.

Об авторе

С. В. Тополянская
ФГАОУ ВО Первый Московский государственный медицинский университет имени И.М. Сеченова Министерства здравоохранения РФ (Сеченовский Университет), кафедра госпитальной терапии № 2
Россия
Москва


Список литературы

1. Arnott J.A., Lambi A.G., Mundy C., et al. The role of connective tissue growth factor (CTGF/CCN2) in skeletogenesis. Critical Reviews in Eukaryotic Gene Expression. 2011;21(1):43-69. doi:10.1615/ CritRevEukarGeneExpr.v21.i1.40.

2. Ponticos M. Connective tissue growth factor (CCN2) in blood vessels. Vascul. Pharmacol. 2013;58(3):189-93. doi: 10.1016/j. vph.2013.01.004.

3. Rayego-Mateos S., Rodrigues-Díez R., Morgado-Pascual J.L., et al. Connective tissue growth factor is a new ligand of epidermal growth factor receptor. J. Mol. Cell Biol. 2013;5(5):323–35. doi:10.1093/jmcb/mjt030.

4. Leask A. CCN2 in skin fibrosis. Methods Mol. Biol. 2017;1489:417–21. doi:10.1007/978-1-4939-6430-7_34.

5. Ponticos M., Holmes A.M., Shi-wen X., et al. Pivotal role of connective tissue growth factor in lung fibrosis: MAPK-dependent transcriptional activation of type I collagen. Arthritis Rheum. 2009;60(7):2142-55. doi: 10.1002/art.24620.

6. Ungvari Z., Valcarcel-Ares M.N., Tarantini S., et al. Connective tissue growth factor (CTGF) in age-related vascular pathologies. GeroScience. 2017;39(5-6):491–8. doi:10.1007/s11357-017-9995-5.

7. Branchetti E., Poggio P., Sainger R., et al. Oxidative stress modulates vascular smooth muscle cell phenotype via CTGF in thoracic aortic aneurysm. Cardiovasc. Res. 2013;100(2):316-24. doi: 10.1093/cvr/cvt205.

8. Sachdeva J., Mahajan A., Cheng J., et al. Smooth muscle cellspecific haploinsufficiency restricts the progression of abdominal aortic aneurysm by modulating CTGF expression. PLoS ONE. 2017;12(5):e0178538. doi: 10.1371/journal.pone.0178538.

9. Meng Y., Tian C., Liu L., et al. Elevated expression of connective tissue growth factor, osteopontin and increased collagen content in human ascending thoracic aortic aneurysms. Vascular. 2014;22(1):20-7. doi: 10.1177/1708538112472282.

10. Yao Y., Li B., Fu C., et al. Anti-connective tissue growth factor detects and reduces plaque inflammation in early-stage carotid atherosclerotic lesions. Nanomedicine Nanotechnology, Biol. Med. 2017;13(8):2385–94. doi: 10.1016/j.nano.2017.07.016.

11. Tsoutsman T., Wang X., Garchow K., et al. CCN2 plays a key role in extracellular matrix gene expression in severe hypertrophic cardiomyopathy and heart failure. J. Mol. Cell. Cardiol. 2013; 62:164–78. doi: 10.1016/j.yjmcc.2013.05.019.

12. Touvron M., Escoubet B., Mericskay M., et al. Locally expressed IGF1 propeptide improves mouse heart function in induced dilated cardiomyopathy by blocking myocardial fibrosis and SRF-dependent CTGF induction. DMM Dis. Model. Mech. 2012;5(4):481-481. doi: 10.1242/dmm.009456.

13. Wu C.K., Wang Y.C., Lee J.K., et al. Connective tissue growth factor and cardiac diastolic dysfunction: Human data from the Taiwan Diastolic Heart Failure Registry and molecular basis by cellular and animal models. Eur. J. Heart Fail. 2014;16(2):163–72. doi: 10.1002/ejhf.33.

14. Koshman Y.E., Patel N., Chu M., et al. Regulation of connective tissue growth factor gene expression and fibrosis in human heart failure. J. Card. Fail. 2013;19(4):283–294. doi: 10.1016/j.cardfail.2013.01.013.

15. Gerritsen K.G., Falke L.L., van Vuuren S.H., et al. Plasma CTGF is independently related to an increased risk of cardiovascular events and mortality in patients with atherosclerotic disease: the SMART study. Growth Factors. 2016;34(3–4):149–58. doi: 10.1080/08977194.2016.1210142.

16. Hunt K.J., Jaffa M.A., Garrett S.M., et al. Plasma connective tissue growth factor (CTGF/CCN2) levels predict myocardial infarction in the veterans affairs diabetes trial (VADT) cohort. Diabetes Care. 2018;41(4):840–6. doi: 10.2337/dc17-2083.

17. Gravning J., Gravning J., Ørn S., et al. Myocardial Connective Tissue Growth Factor (CCN2/CTGF) Attenuates Left Ventricular Remodeling after Myocardial Infarction. PLoS ONE. 2012;7(12):e52120. doi: 10.1371/journal.pone.0052120.

18. Ritschel V., Shetelig C., Seljeflot I., et al. Evaluation of circulating levels of CCN2/connective tissue growth factor in patients with ST-elevation myocardial infarction. Scientific Reports. 2017;7(1):11945. doi: 10.1038/s41598-017-12372-w.

19. Chi H., Feng H., Shang X., et al. Circulating Connective Tissue Growth Factor Is Associated with Diastolic Dysfunction in Patients with Diastolic Heart Failure. Cardiology (Switzerland). 2019;143(3-4):77-84. doi: 10.1159/000499179.

20. Koitabashi N., Arai M., Niwano K., et al. Plasma connective tissue growth factor is a novel potential biomarker of cardiac dysfunction in patients with chronic heart failure. Eur. J. Heart Fail. 2008;10(4):373-9. doi: 10.1016/j.ejheart.2008.02.011.

21. Ehnes M., Brueckmann M., Lang S., et al. Connective tissue growth factor (CTGF/CCN2): Diagnostic and prognostic value in acute heart failure. Clin. Res. Cardiol. 2014;103(2):107–16. doi: 10.1007/s00392013-0626-6.

22. Chen J.Q., Guo Y.S., Chen Q., et al. TGFβ1 and HGF regulate CTGF expression in human atrial fibroblasts and are involved in atrial remodelling in patients with rheumatic heart disease. J. Cell. Mol. Med. 2019;23(4):3032-9. doi: 10.1111/jcmm.14165.

23. Ko W.C., Hong C.Y., Hou S.M., et al. Elevated expression of connective tissue growth factor in human atrial fibrillation and angiotensin II-treated cardiomyocytes. Circ. J. 2011;75(7):1592-600. doi: 10.1253/ circj.cj-10-0892.

24. Leeuwis J.W., Nguyen T.O., Theunissen M.G.J., et al. Connective tissue growth factor is associated with a stable atherosclerotic plaque phenotype and is involved in plaque stabilization after stroke. Stroke. 2010;41(12):2979-81. doi: 10.1161/STROKEAHA.110.589036.

25. Gonzalez D., Brandan E. CTGF/CCN2 from Skeletal Muscle to Nervous System: Impact on Neurodegenerative Diseases. Molecular Neurobiology. Humana Press Inc., 2019;56(8):5911–6. doi: 10.1007/ s12035-019-1490-9.

26. Yoshino J., Patterson B.W., Klein S. Adipose Tissue CTGF Expression is Associated with Adiposity and Insulin Resistance in Humans. Obesity. 2019;27(6):957-62. doi: 10.1002/oby.22463.

27. Tan J.T.M., McLennan S.V., Williams P.F., et al. Connective tissue growth factor/CCN-2 is upregulated in epididymal and subcutaneous fat depots in a dietary-induced obesity model. Am. J. Physiol. Endocrinol. Metab. 2013;304(12):E1291-E1302. https://doi. org/10.1152/ajpendo.00654.2012.

28. Leung J.C.K., Chan L.Y.Y., Tam K.Y., et al. Regulation of CCN2/ CTGF and related cytokines in cultured peritoneal cells under conditions simulating peritoneal dialysis. Nephrol. Dial. Transplant. 2009;24(2):458–69. doi: 10.1093/ndt/gfn524.

29. Slagman M.C.J., Nguyen T.Q., Waanders F., et al. Effects of antiproteinuric intervention on elevated Connective Tissue Growth Factor (CTGF/ CCN-2) plasma and urine levels in nondiabetic nephropathy. Clin. J. Am. Soc. Nephrol. 2011;6(8):1845–50. doi: 10.2215/CJN.08190910.

30. Nguyen T.Q., Tarnow L., Andersen S., et al. Urinary connective tissue growth factor excretion correlates with clinical markers of renal disease in a large population of type 1 diabetic patients with diabetic nephropathy. Diabetes Care. 2006;29(1):83-8. doi: 10.2337/ diacare.29.01.06.dc05-1670.

31. Jaffa A.A., Usinger W.R., Mchenry B., et al. Connective tissue growth factor and susceptibility to renal and vascular disease risk in type 1 diabetes. J. Clin. Endocrinol. Metab. 2008;93(5):1893-900. doi: 10.1210/jc.2007-2544.

32. Nguyen T.Q., Tarnow L., Jorsal A., et al. Plasma connective tissue growth factor is an independent predictor of end-stage renal disease and mortality in type 1 diabetic nephropathy. Diabetes Care. 2008;31(6):1177–82. doi: 10.2337/dc07-2469.

33. Toda N., Mukoyama M., Yanagita M., et al. CTGF in kidney fibrosis and glomerulonephritis. Inflamm. Regen. 2018;38 (1):1–8. doi: 10.1186/ s41232-018-0070-0.

34. Toda N., Mori K., Kasahara M., et al. Crucial Role of Mesangial Cell-derived Connective Tissue Growth Factor in a Mouse Model of Anti-Glomerular Basement Membrane Glomerulonephritis. Sci. Rep. 2017;7:1-16. doi: 10.1038/srep42114

35. Mizdrak M., Filipovic N., Vukojevic K., et al. Prognostic value of connective tissue growth factor and c-Myb expression in IgA nephropathy and Henoch-Schonlein purpura — A pilot immunohistochemical study. Acta Histochemica. 2020;122(2):151479. doi: 10.1016/j.acthis.2019.151479.

36. den Hoedt C.H., van Gelder M.R., Grooteman M.P., et al. Connective Tissue Growth Factor Is Related to All-cause Mortality in Hemodialysis Patients and Is Lowered by On-line Hemodiafiltration: Results from the Convective Transport Study. Toxins. 2019;11(5):268. doi: 10.3390/toxins11050268.

37. Vanhove T., Kinashi H., Nguyen T.G., et al. Tubulointerstitial expression and urinary excretion of connective tissue growth factor 3 months after renal transplantation predict interstitial fibrosis and tubular atrophy at 5 years in a retrospective cohort analysis.Transpl. Int. 2017;30(7):695–705. doi: 10.1111/tri.12960.

38. Jang J.H., Chand H.S., Bruse S., et al. Connective Tissue Growth Factor Promotes Pulmonary Epithelial Cell Senescence and Is Associated with COPD Severity. COPD J. Chronic Obstr. Pulm. Dis. 2017;14(2):228–37. doi: 10.1080/15412555.2016.1262340.

39. Lipson K.E., Wong C., Teng Y., et al. CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenesis Tissue Repair. 2012;5(Suppl 1):S24. doi: 10.1186/1755-1536-5-S1-S24.

40. Richeldi L., Fernández Pérez E.R., Costabel U., et al. Pamrevlumab, an anti-connective tissue growth factor therapy, for idiopathic pulmonary fibrosis (PRAISE): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Respir Med. 2020;8(1):25–33. doi: 10.1016/S2213-2600(19)30262-0.

41. Wang X., Cui H., Wu S. CTGF: A potential therapeutic target for Bronchopulmonary dysplasia. European Journal of Pharmacology.2019;860:172588. doi: 10.1016/j.ejphar.2019.172588.

42. Xie Y., Wang Y., Liu K., et al. Correlation analysis between mechanical power, transforming growth factor-b1, and connective tissue growth factor levels in acute respiratory distress syndrome patients and their clinical significance in pulmonary structural remodeling. Medicine. 2019;98(29):e16531. doi: 10.1097/MD.0000000000016531.

43. Song Z.M., Liu F., Chen Y-M., et al. CTGF-mediated ERK signaling pathway influences the inflammatory factors and intestinal flora in ulcerative colitis. Biomedicine & Pharmacotherapy. 2019;111:1429–37. doi: 10.1016/j.biopha.2018.12.063.

44. Wells J.E., Howlett M., Cole C.H., et al. Deregulated expression of connective tissue growth factor (CTGF/CCN2) is linked to poor outcome in human cancer. International Journal of Cancer. Wiley-Liss Inc. 2015;137(3):504–11. doi: 10.1002/ijc.28972.

45. Li X.T., Li J.Y., Zeng G.C., et al. Overexpression of connective tissue growth factor is associated with tumor progression and unfavorable prognosis in endometrial cancer. Cancer Biomark. 2019;25(4):295302. doi: 10.3233/cbm-190099.

46. Shimbo A., Kajiyama H., Tamauchi S., et al. Expression of connective tissue growth factor as a prognostic indicator and its possible involvement in the aggressive properties of epithelial ovarian carcinoma. Oncol Rep. 2019;42(6):2323-2332. doi: 10.3892/ or.2019.7352.

47. Kubota S., Takigawa M. Cellular and molecular actions of CCN2/CTGF and its role under physiological and pathological conditions.Clin. Sci. Portland Press Ltd. 2014;128(3):181–96. doi: 10.1042/CS20140264

48. Tomita N., Hattori T., Itoh S., et al. Cartilage-specific over-expression of CCN family member 2/connective tissue growth factor (CCN2/ CTGF) stimulates insulin-like growth factor expression and bone growth. PLoS One. 2013;8(3):e59226. doi: 10.1371/journal. pone.0059226

49. Itoh S., Hattori T., Tomita N., et al. CCN Family Member 2/Connective Tissue Growth Factor (CCN2/CTGF) Has Anti-Aging Effects That Protect Articular Cartilage from Age-Related Degenerative Changes. PLoS One. 2013;8(8):1–2. doi: 10.1371/journal.pone.0071156

50. Tang X., Muhammad H., McLean C., et al. Connective tissue growth factor contributes to joint homeostasis and osteoarthritis severity by controlling the matrix sequestration and activation of latent TGFβ. Ann. Rheum. Dis. 2018;77 (9):1372–80. doi: 10.1136/ annrheumdis-2018-212964

51. Xu B., Wang X., Wu C., et al. Flavonoid compound icariin enhances BMP-2 induced differentiation and signalling by targeting to connective tissue growth factor (CTGF) in SAMP6 osteoblasts. PLoS ONE. 2018;13(7):e0200367. doi: 10.1371/journal.pone.0200367

52. Sun W., Ma J., Zhao H., et al. Resolvin D1 suppresses pannus formation via decreasing connective tissue growth factor caused by upregulation of miRNA146a-5p in rheumatoid arthritis. Arthritis Research & Therapy.2020; 22(1):61. doi: 10.1186/s13075-020-2133-2.

53. Bassyouni I.H., Mohammed W.H.S., Taha F.M. Clinical significance of CCN2/connective tissue growth factor in Behçet’s disease patients. Int J Rheum Dis. 2019;22(8):1459-65. doi: 10.1111/1756-185X.13597.

54. Quan T., Shao Y., He T., et al. Reduced expression of connective tissue growth factor (CTGF/CCN2) mediates collagen loss in chronologically aged human skin. J. Invest. Dermatol. 2010;130(2):415–24. doi: 10.1038/jid.2009.224

55. van Almen G.C., Verhesen W., van Leeuwen R.E.W., et al. MicroRNA-18 and microRNA-19 regulate CTGF and TSP-1 expression in age-related heart failure. Aging Cell. 2011;10 (5):769-79. doi: https:// doi.org/10.1111/j.1474-9726.2011.00714.x

56. Jun J.I.I., Lau L.F. CCN2 induces cellular senescence in fibroblasts. J. Cell Commun. Signal. Springer Netherlands. 2017;11(1):15–23. doi: 10.1007/s12079-016-0359-1


Для цитирования:


Тополянская С.В. Фактор роста соединительной ткани в норме и патологии. Архивъ внутренней медицины. 2020;10(4):254-261. https://doi.org/10.20514/2226-6704-2020-10-4-254-261

For citation:


Topolyanskaya S.V. Connective Tissue Growth Factor in Normal and Pathological Processes. The Russian Archives of Internal Medicine. 2020;10(4):254-261. https://doi.org/10.20514/2226-6704-2020-10-4-254-261

Просмотров: 93


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2226-6704 (Print)
ISSN 2411-6564 (Online)